标签:gets desc batch set es2017 问题 toc before minimum
对于一个线性回归问题有
为了使得预测值h更加接近实际值y,定义
J越小,预测更加可信,可以通过对梯度的迭代来逼近极值
批梯度下降(batch gradient descent)(the entire training set before taking a single step)
随机梯度下降(stochastic gradient descent)(gets θ “close” to the minimum much faster than batch gradient descent)
这里可以看到更详细的解释http://www.cnblogs.com/czdbest/p/5763451.html
也可以通过求J的梯度等于0向量来确定极值
来自吴恩达机器学习
随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)
标签:gets desc batch set es2017 问题 toc before minimum
原文地址:http://www.cnblogs.com/imageSet/p/7577167.html