码迷,mamicode.com
首页 > 其他好文 > 详细

laplace transform 拉普拉斯变换

时间:2017-09-23 13:44:52      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:orm   sel   redirect   abi   str   nsf   html   com   images   

参考网址:

1. https://en.wikipedia.org/wiki/First-hitting-time_model

2. https://en.wikipedia.org/wiki/Laplace_transform

技术分享

 

Probability theory

技术分享

 

By abuse of language, this is referred to as the Laplace transform of the random variable X itself. Replacing s by ?t gives the moment generating function of X. The Laplace transform has applications throughout probability theory, including first passage times of stochastic processessuch as Markov chains, and renewal theory.

Of particular use is the ability to recover the cumulative distribution function of a continuous random variable X by means of the Laplace transform as follows[11]

{\displaystyle F_{X}(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}E\left[e^{-sX}\right]\right\}\!(x)={\mathcal {L}}^{-1}\!\left\{{\frac {1}{s}}{\mathcal {L}}\{f\}(s)\right\}\!(x).}技术分享

laplace transform 拉普拉斯变换

标签:orm   sel   redirect   abi   str   nsf   html   com   images   

原文地址:http://www.cnblogs.com/skykill/p/7580677.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!