标签:随机 证明 ons graph 运行 sele expr 复杂度 red
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
An algorithm is said to be of polynomial time if its running time is upper bounded by a polynomial expression in the size of the input for the algorithm, i.e., T(n) = O(nk) for some constant k.[1][8] Problems for which a deterministic polynomial time algorithm exists belong to the complexity class P, which is central in the field of computational complexity theory. Cobham‘s thesis states that polynomial time is a synonym for "tractable", "feasible", "efficient", or "fast".[9]
Some examples of polynomial time algorithms:
The concept of polynomial time leads to several complexity classes in computational complexity theory. Some important classes defined using polynomial time are the following.
P is the smallest time-complexity class on a deterministic machine which is robust in terms of machine model changes. (For example, a change from a single-tape Turing machine to a multi-tape machine can lead to a quadratic speedup, but any algorithm that runs in polynomial time under one model also does so on the other.) Any given abstract machinewill have a complexity class corresponding to the problems which can be solved in polynomial time on that machine.
从多项式时间的概念出发,在计算复杂度理论中可以得到一些复杂度类。以下是一些重要的例子。
在机器模型可变的情况下,P在确定性机器上是最小的时间复杂度类。例如,将单带图灵机换成多带图灵机可以使算法运行速度以二次阶提升,但所有具有多项式时间的算法依然会以多项式时间运行。一种特定的抽象机器会有自己特定的复杂度类分类。
图灵机(英语:Turing machine),又称确定型图灵机,是英国数学家艾伦·图灵于1936年提出的一种抽象计算模型,其更抽象的意义为一种数学逻辑机,可以看作等价于任何有限逻辑数学过程的终极强大逻辑机器。
非确定型图灵机和确定型图灵机的不同之处在于,在计算的每一时刻,根据当前状态和读写头所读的符号,机器存在多种状态转移方案,机器将任意地选择其中一种方案继续运作,直到最后停机为止。具体而言,其状态转移函数为
在计算复杂性理论内,概率图灵机是一个非决定型图灵机,在每个转折点根据某种概率分布随机选择某种可行的转变(transition)。
要理解这几个概念,首先要明白几件事:
标签:随机 证明 ons graph 运行 sele expr 复杂度 red
原文地址:http://www.cnblogs.com/yuanjiangw/p/7596485.html