码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习--决策树

时间:2017-09-26 19:46:51      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:替换   block   带来   目标   ges   性能提升   连续   src   算法   

 

基本流程:

  决策树:

    根结点:属性测试,包含样本全集

    内部结点:属性测试,根据属性测试的结果被划分到子结点中

    叶结点:决策结果

技术分享

  划分选择:如何选择最优划分属性。目标是结点的"纯度"越来越高

  1.信息增益:

    使用“信息熵”:技术分享技术分享

  信息增益越大,意味使用属性a划分所获得的“纯度提升”越大。因此可以使用信息增益进行决策树的划分属性选择。即在决策树算法的图中的第八行选择属性a*=argmaxGain(D,a)

  2.增益率

  Gain_ratio(D,a)=Gain(D,a)/IV(a)

  IV(a)=技术分享

  3.基尼指数

  数据集的纯度可用基尼值来度量

技术分享

  剪枝:

  如果能为决策树带来泛化性能提升,则将该子树替换为叶结点。

  预剪枝,后剪枝

  连续与缺失值

  二分法、

 

机器学习--决策树

标签:替换   block   带来   目标   ges   性能提升   连续   src   算法   

原文地址:http://www.cnblogs.com/Ccmr/p/7598021.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!