标签:des style blog http color os io 使用 java
RabbitMQ:
MQ:message queue.MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。其中较为成熟的MQ产品有IBM WEBSPHERE MQ。ActiveMQ.
下载:http://www.rabbitmq.com/download.html
首先要安装Erlange:http://www.erlang.org/download.html
配置环境变量 ERLANG_HOME C:\Program Files (x86)\erl6.1
添加到PATH %ERLANG_HOME%\bin;
配置环境变量 C:\Program Files (x86)\RabbitMQ Server\rabbitmq_server-2.8.0
添加到PATH %RABBITMQ_SERVER%\sbin;
进入sbin目录,启动,或者在star menu点击start。
rabbitmq-service.bat start
接着安装管理工具
参考官方文档:http://www.rabbitmq.com/management.html
操作起来很简单,只需要在DOS下面,进入安装目录(C:\RabbitMQ Server\rabbitmq_server-3.2.2\sbin)执行如下命令就可以成功安装。
rabbitmq-plugins enable rabbitmq_management
可以通过访问http://localhost:15672进行测试,默认的登陆账号为:guest,密码为:guest。
如果访问成功了,恭喜,整个rabbitMQ安装完成了。
RabbitMQ服务端是用AMPQ协议的, 而客户端支持多种语言(Java, .NET, C/C++,Erlang......)。下面我们准备用java来写一个hello world,测试RabbitMQ是否安装OK。
Firstly, download and run the Erlang Windows Binary File. It takes around 5 minutes.
Then just run the installer, rabbitmq-server-3.3.5.exe. It takes around 2 minutes, and will set RabbitMQ up and running as a service, with a default configuration.
The service will run fine using its default settings. You may want to customise the RabbitMQ environment or edit configuration.
The RabbitMQ service starts automatically. You can stop/reinstall/start the RabbitMQ service from the Start Menu.
You can find links to RabbitMQ directories in the Start Menu.
There is also a link to a command prompt window that will start in the sbin dir, in the Start Menu. This is the most convenient way to run the various command line tools.
The broker creates a user guest with password guest. Unconfigured clients will in general use these credentials. By default, these credentials can only be used when connecting to the broker as localhost so you will need to take action before connecting fromn any other machine.
See the documentation on access control for information on how to create more users, delete the guestuser, or allow remote access to the guest user.
To stop the broker or check its status, use rabbitmqctl.bat in sbin (as an administrator).
Use rabbitmqctl stop.
Use rabbitmqctl status. All rabbitmqctl commands will report the node absence if no broker is running (i.e. nodedown).
More info on rabbitmqctl
Output from the server is sent to a RABBITMQ_NODENAME.log file in the RABBITMQ_LOG_BASE directory. Additional log data is written to RABBITMQ_NODENAME-sasl.log.
The broker always appends to the log files, so a complete log history is retained.
You can rotate logs using rabbitmqctl rotate_logs.
In the event that the Erlang VM crashes whilst RabbitMQ is running as a service, rather than writing the crash dump to the current directory (which doesn‘t make sense for a service) it is written to anerl_crash.dump file in the base directory of the RabbitMQ server (set by the RABBITMQ_BASE environment variable, defaulting to %APPDATA%\%RABBITMQ_SERVICENAME% - typically %APPDATA%\RabbitMQ otherwise).
使用场景:
在项目中,将一些无需即时返回且耗时的操作提取出来,进行了异步处理,而这种异步处理的方式大大的节省了服务器的请求响应时间,从而提高了系统的吞吐量
编程测试rabbitMQ:
http://www.rabbitmq.com/tutorials/tutorial-one-java.html
下面代码来自上面网址:
Send:
import com.rabbitmq.client.ConnectionFactory; import com.rabbitmq.client.Connection; import com.rabbitmq.client.Channel; public class Send { private final static String QUEUE_NAME = "hello"; public static void main(String[] argv) throws Exception { ConnectionFactory factory = new ConnectionFactory(); factory.setHost("localhost"); Connection connection = factory.newConnection(); Channel channel = connection.createChannel(); channel.queueDeclare(QUEUE_NAME, false, false, false, null); String message = "Hello World!"; channel.basicPublish("", QUEUE_NAME, null, message.getBytes()); System.out.println(" [x] Sent ‘" + message + "‘"); channel.close(); connection.close(); } }
The connection abstracts the socket connection, and takes care of protocol version negotiation and authentication and so on for us. Here we connect to a broker on the local machine - hence the localhost. If we wanted to connect to a broker on a different machine we‘d simply specify its name or IP address here.
Next we create a channel, which is where most of the API for getting things done resides.
To send, we must declare a queue for us to send to; then we can publish a message to the queue。
Declaring a queue is idempotent - it will only be created if it doesn‘t exist already. The message content is a byte array, so you can encode whatever you like there.
The code (in Recv.java) has almost the same imports as Send:
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.QueueingConsumer;
The extra QueueingConsumer is a class we‘ll use to buffer the messages pushed to us by the server.
Setting up is the same as the sender; we open a connection and a channel, and declare the queue from which we‘re going to consume. Note this matches up with the queue that sendpublishes to.
public class Recv {
private final static String QUEUE_NAME = "hello";
public static void main(String[] argv)
throws java.io.IOException,
java.lang.InterruptedException {
ConnectionFactory factory = new ConnectionFactory();
factory.setHost("localhost");
Connection connection = factory.newConnection();
Channel channel = connection.createChannel();
channel.queueDeclare(QUEUE_NAME, false, false, false, null);
System.out.println(" [*] Waiting for messages. To exit press CTRL+C");
...
}
}
Note that we declare the queue here, as well. Because we might start the receiver before the sender, we want to make sure the queue exists before we try to consume messages from it.
We‘re about to tell the server to deliver us the messages from the queue. Since it will push us messages asynchronously, we provide a callback in the form of an object that will buffer the messages until we‘re ready to use them. That is what QueueingConsumer does.
QueueingConsumer consumer = new QueueingConsumer(channel);
channel.basicConsume(QUEUE_NAME, true, consumer);
while (true) {
QueueingConsumer.Delivery delivery = consumer.nextDelivery();
String message = new String(delivery.getBody());
System.out.println(" [x] Received ‘" + message + "‘");
}
QueueingConsumer.nextDelivery() blocks until another message has been delivered from the server.
几个概念:
标签:des style blog http color os io 使用 java
原文地址:http://www.cnblogs.com/youxin/p/3963535.html