码迷,mamicode.com
首页 > 其他好文 > 详细

剑指offer九之变态跳台阶

时间:2017-09-30 23:14:49      阅读:339      评论:0      收藏:0      [点我收藏+]

标签:台阶   turn   回归   简化   pen   bsp   floor   nbsp   简单   

一、题目

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

二、思路

1、关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3) 

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) 

 

2、说明: 

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2) 

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

    那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

    因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

    f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

    

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

    f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

    f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

    可以得出:

    f(n) = 2*f(n-1)

    

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

              | 1       ,(n=0 ) 

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)

三、代码

技术分享
public class Solution {
    public int JumpFloorII(int target) {
        if (target <= 0) {
            return -1;
        } else if (target == 1) {
            return 1;
        } else {
            return 2 * JumpFloorII(target - 1);
        }
    }
}
View Code

----------------------------------------------------------------------------------------------

参考链接:https://www.nowcoder.com/profile/286927/codeBookDetail?submissionId=1522855

剑指offer九之变态跳台阶

标签:台阶   turn   回归   简化   pen   bsp   floor   nbsp   简单   

原文地址:http://www.cnblogs.com/hezhiyao/p/7616279.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!