码迷,mamicode.com
首页 > 其他好文 > 详细

【莫比乌斯反演】——蒟蒻的理解

时间:2017-10-01 14:24:37      阅读:225      评论:0      收藏:0      [点我收藏+]

标签:全面   为什么   如何   欧拉   psi   amp   一段   练习   zoj   

  序:最近被反演虐的不要不要的,遂决定写一篇博文,防止以后自己翻车……

1.定义

  莫比乌斯函数:$\mu(n)$

$\begin{cases}
& \text{ if } x= \prod_{i=1}^kp_i\;\;\mu(x)=(-1)^k\\
\\
& \text{ else }\;\;\;\;\;\;\;\;\;\;\;\;\;\; \mu(x)=0
\end{cases}$

   我们引入一个概念,狄利克雷卷积。即$(f*g)(n)=\sum_{d|n}f(d)*g(\frac n d)$。显然,狄利克雷卷积是满足交换律的。同时其也满足结合律与分配率。

  在引入一个概念,积性函数,即函数$f$对于互质的两个数$i,j$满足$f(i*j)=f(i)*f(j)$。其中如果对于任意$i,j$满足$f(i*j)=f(i)*f(j)$,我们称其为完全积性函数。

  再例举一些函数的符号:欧拉函数$\phi$,约数个数函数$d$,约数和函数$\sigma$,单位函数$id(n)=n$,元函数$\varepsilon(n)$,当n为1时,$\varepsilon(n)=1$,否则$\varepsilon(n)=0$,以及不变的函数$1(n)=1$。

  这里给出一个线性筛的板子:

  

 1 const int N=1e7+1;
 2  
 3 int miu[N],prim[N/5],num,sum[N];
 4 bool vis[N];
 5  
 6 inline void init(){
 7     miu[1]=1;
 8     sum[1]=1;
 9     for(int i=2;i<N;i++){
10         if(!vis[i])
11             prim[++num]=i,miu[i]=-1;
12         for(int j=1;prim[j]*i<N;j++){
13             vis[i*prim[j]]=1;
14             if(i%prim[j]==0){
15                 miu[i*prim[j]]=0;
16                 break;
17             }
18             miu[i*prim[j]]=-miu[i];
19         }
20         sum[i]=sum[i-1]+miu[i];
21     }
22 }

 

 

 

2.莫比乌斯函数的性质

  这一段是从目前做过的题总结的,以后没准还得改(没准写的不够……

   莫比乌斯函数一个十分总要的性质,即$(\mu *1)(n)$当且仅当$n==1$时,为1,否则为0。

  关于这个的证明用 二项式定理+唯一分解定理 是很好证明的,这里就不多说了。

3.莫比乌斯反演

  关于这块,一来是式子太长,二来是百度已经写得很全面了,所以蒟蒻就不献丑了。

  参考链接:百度百科

  我想,这里比较重要的一个性质是:$F(n)=(f*1)(n)$,若$f$为积性函数,则$F(n)$也是积性函数。

  证明如下:

  设$\gcd (n,p)==1$。

  $F(n*p)=\sum_{i|n}\sum_{j|p}f(i*j)=\sum_{i|n}f(i)\sum_{j|p}f(j)=F(n)*F(p)$

  证毕。

  这个性质在我们反演出一个形如$ans=\sum_{i=1}^{n}g(i)\sum_{d|i}f(d)$的式子时,若$f$为积性函数,则我们可以将这个式子时间复杂度优化到至少$O(n)$。

  例如:

  $$F(n)=\sum_{i|n}\mu(i)*i*n$$

4.关于做题

  这个我也没有什么发言权,毕竟我太弱了……但还是想总结一下自己的想法。

  反演最重要的是$gcd(i,j)==1$等价为$\sum_{d|t}\mu(d),t=gcd(i,j)$这一式子,在目前所遇到的题目中,关键都是如何将题目给出的内容转化为$gcd$,并且正确的化解,这个我也不怎么会,只能多练习了。

5.总结

  个人觉得一些基本证明会不会都不是很重要,毕竟也不可能考为什么$id=(\phi*1)$之类的,明白其过程,对思考有启发就足以。

6.一些题目:

   BZOJ YY的GCD

  BZOJ 4176 Lucas的数论
  BZOJ 3930 CQOI2015 选数
  bzoj2693: jzptab
  BZOJ 4174 tty的求助
  BZOj 3601:一个人的数论

 

【莫比乌斯反演】——蒟蒻的理解

标签:全面   为什么   如何   欧拉   psi   amp   一段   练习   zoj   

原文地址:http://www.cnblogs.com/Troywar/p/7599875.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!