标签:xpl get esc bool least solution 建立 vector lis
Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.
Example 1:
Input: [23, 2, 4, 6, 7], k=6 Output: True Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:
Input: [23, 2, 6, 4, 7], k=6 Output: True Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:
题意解读:该题题意是给定一个数组和一个整数k,求是否存在这样的一个连续的子数组,该子数组的所有数之和可以整除k。
思路分析:该题最直观的思路肯定是暴力求解法,即求出所有的连续子数组,并判断每个连续子数组的所有数之和是否能整除k,这种解法时间复杂度为指数级别,OJ肯定不通过,因此需要优化。如果刷题多的话,遇到这种求子数组或者子矩阵的和的问题,一般会想到要建立子数组或者子矩阵的累加和,本题也是采用这种思路。我们要遍历所有的子数组,然后利用累加和来快速求和。在得到每个子数组之和时,我们先和k比较,如果相同直接返回true,否则再判断,若k不为0,且sum能整除k,同样返回true,最后遍历结束返回false,参见代码如下:
class Solution {
public:
bool checkSubarraySum(vector<int>& nums, int k) {
for (int i = 0; i < nums.size(); ++i) {
int sum = nums[i];
for (int j = i + 1; j < nums.size(); ++j) {
sum += nums[j];
if (sum == k) return true;
if (k != 0 && sum % k == 0) return true;
}
}
return false;
}
};
下面的方法比较巧妙,利用了参考资料中提到的一个数学定理:若数a和b分别除以数c,若得到的余数相同,那么(a-b)必定能够整除c。根据这一定理,建立一个哈希表记录余数和当前位置的映射关系,如果累加到当前位置的累加和除以k得到的余数在哈希表中已经存在,说明前面必定存在一个连续子数组的和能够整除k。即nums[i,j]和nums[i,m](注:m>j+1,因为题目要求连续子数组中的元素数目至少为2)都能被k整除,则nums[i,m] - nums[i,j] = nums[j+1,m]必定能被k整除。参考代码如下:
class Solution {
public:
bool checkSubarraySum(vector<int>& nums, int k) {
int n = nums.size(), sum = 0;
unordered_map<int, int> m{{0,-1}};
for (int i = 0; i < n; ++i) {
sum += nums[i];
int t = (k == 0) ? sum : (sum % k);
if (m.count(t)) {
if (i - m[t] > 1) return true;
} else m[t] = i;
}
return false;
}
};
参考资料:
http://www.cnblogs.com/grandyang/p/6504158.html
leetcode: Continuous Subarray Sum
标签:xpl get esc bool least solution 建立 vector lis
原文地址:http://www.cnblogs.com/snow826520/p/7620146.html