标签:int 排序 names namespace main amp ext long [1]
题意:
首先定义一个序列为Beautiful为:对 2<=i<=n-1 : a[i-1]+a[i+1] >= 2*a[i]
给定n个数,问这些数的所有排列为Beautiful的有多少个
题解:
由 a[i-1]+a[i+1] >= 2*a[i],知 a[i+1]-a[i] >= a[i]-a[i-1],
也就是说,Beautiful的序列先单减,后单增。且相邻两项之间的差在变大。
将这n个数排序。
我们用dp[lastA][preA][lastB][preB]记录下:
当单减部分最大数为lastA,次大数为preA。单增部分最大数为lastB,次大数为preB时,的方案数。
新加入一个元素时,考虑一下放在左边,放在右边。就能转移了。
code:
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
#define MOD (1000000007)
int n;
LL dp[62][62][62][62]; //dp[last_A][pre_A][last_B][pre_B]
LL a[62];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++) {
scanf("%lld", &a[i]);
}
//------------------------------- init
sort(a + 1, a + 1 + n);
int low = 1; LL tmp = 1;
for (int i = 2; i <= n; i ++) {
if (a[i] == a[1]) {
low ++; tmp = tmp * low % MOD;
}
}
n = n - (low - 1);
for (int i = 1; i <= n; i ++) {
a[i] = a[i + low - 1];
}
//-------------------------------solve
LL ans = 0;
dp[1][0][1][0] = tmp;
for (int i = 1; i <= n; i ++) {
for (int j = 0; j < n; j ++) {
for (int k = 1; k <= n; k ++) {
for (int t = 0; t < n; t ++) {
int nxt = max(i, k) + 1;
if (nxt == n+1) {
(ans += dp[i][j][k][t]) %= MOD; continue;
}
// the next element joins A
if ( a[nxt] - a[i] >= a[i] - a[j] || j == 0)
( dp[nxt][i][k][t] += dp[i][j][k][t] ) %= MOD;
// the next element joins B
if ( a[nxt] - a[k] >= a[k] - a[t] || t == 0)
( dp[i][j][nxt][k] += dp[i][j][k][t] ) %= MOD;
}
}
}
}
//------------------------------------
cout << ans << endl;
}
HihoCoder 1596 Beautiful Sequence题解
标签:int 排序 names namespace main amp ext long [1]
原文地址:http://www.cnblogs.com/RUSH-D-CAT/p/7630532.html