码迷,mamicode.com
首页 > 其他好文 > 详细

01矩阵求最大子矩阵大小

时间:2017-10-07 14:41:33      阅读:145      评论:0      收藏:0      [点我收藏+]

标签:ret   进栈出栈   map   size   情况   ++   sem   span   元素   

问题:一个矩阵只含有0 1两种元素,求只包含1的最大子矩阵大小(大小用包含的1的个数表示)

假设矩阵大小为N x M, 要求时间复杂度为O(N x M)

 

例如给定如下矩阵:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 4

 

对这类的矩阵问题,可以逐行解决。

先思考这样一个问题,如何求一个数组{3 4 5 2 4}围成的最大面积。

对任意一个位置i,我们需要找到其左右边第一个小于arr[i]的数的位置p1,p2,则位置i对应的面积是(p2 - p1 - 1)* arr[i]

需要一个辅助栈,压入弹出规则如下:(注意只压入下标)

1. 若当前数 arr[i] 大于或等于栈顶数arr[j],压入当前数的下标i;

2.否则,弹出栈顶数j。此时栈顶数为k,继续判断。

 

只在情况2中计算想要的面积。对弹出的栈顶数j,其右边第一个比他小的数为arr[i], 其左边第一个比他小的数为arr[k]. 则对j来说,

其对应的面积为(i - k - 1)* arr[j]

当栈为空, 左边界为-1   或已经压入了所有的数组元素,其右边界就为arr.length

 

由于每个元素只进栈出栈一次,其复杂度为O(M)

public static int maxRecSize(int[][] map) {
        if (map == null || map.length == 0 || map[0].length == 0) {
            return 0;
        }
        int maxArea = 0;
        int[] height = new int[map[0].length];
        for (int i = 0; i < map.length; i++) {
            for (int j = 0; j < map[0].length; j++) {
                height[j] = map[i][j] == 0 ? 0 : height[j] + 1;
            }
            maxArea = Math.max(maxRecFromBottom(height), maxArea);
        }
        return maxArea;
    }

    public static int maxRecFromBottom(int[] height) {
        if (height == null || height.length == 0) {
            return 0;
        }
        int maxArea = 0;
        Stack<Integer> stack = new Stack<Integer>();
        for (int i = 0; i < height.length; i++) {
            while (!stack.isEmpty() && height[i] <= height[stack.peek()]) {
                int j = stack.pop();//每弹出一个数即开始一次计算
                int k = stack.isEmpty() ? -1 : stack.peek();//r若栈空,左边比他小的数的位置为-1.
                int curArea = (i - k - 1) * height[j];
                maxArea = Math.max(maxArea, curArea);
            }
            stack.push(i);
        }
//压入所有数之后,右边界为arr.length
while (!stack.isEmpty()) { int j = stack.pop(); int k = stack.isEmpty() ? -1 : stack.peek(); int curArea = (height.length - k - 1) * height[j]; maxArea = Math.max(maxArea, curArea); } return maxArea; }

 

01矩阵求最大子矩阵大小

标签:ret   进栈出栈   map   size   情况   ++   sem   span   元素   

原文地址:http://www.cnblogs.com/CodeCafe/p/7634233.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!