标签:val set docx 有限公司 上海 sort bsp 文件 text
利用国庆8天假期,从头开始学爬虫,现在分享一下自己项目过程。
技术思路:
1,使用scrapy爬去证监会反馈意见
2,安装并配置mysql
3,利用进行数据分析
分析思路:
核心代码:
# -*- coding: utf-8 -*- import scrapy from scrapy.selector import Selector from fkyj.items import FkyjItem import urllib.request from scrapy.http import HtmlResponse from scrapy.selector import HtmlXPathSelector def gen_url_indexpage():
#证监会的网站是通过javascript生成的,因此网址无法提取,必须是自己生成 pre = "http://www.csrc.gov.cn/pub/newsite/fxjgb/scgkfxfkyj/index" url_list = [] for i in range(25): if i ==0: url = pre+".html" url_list.append(url) else: url = pre+"_"+str(i)+".html" url_list.append(url) return url_list class Spider1Spider(scrapy.Spider): name = ‘spider1‘ allowed_domains = [‘http://www.csrc.gov.cn‘] start_urls = gen_url_indexpage() def parse(self, response): item = FkyjItem() page_lst = response.xpath(‘//ul[@id="myul"]/li/a/@href‘).extract() name_lst = response.xpath(‘//ul[@id="myul"]/li/a/@title‘).extract() date_lst= response.xpath(‘//ul[@id="myul"]/li/span/text()‘).extract() for i in range(len(name_lst)): item["name"] = name_lst[i] item["date"] = date_lst[i] url_page = "http://www.csrc.gov.cn/pub/newsite/fxjgb/scgkfxfkyj" +page_lst[i] pre_final = "http://www.csrc.gov.cn/pub/newsite/fxjgb/scgkfxfkyj/" + page_lst[i].split("/")[1] res = Selector(text= urllib.request.urlopen(url_page).read().decode("utf-8")) #给res装上HtmlXPathSelector url_extract = res.xpath("//script").re(r‘<a href="(\./P\d+?\.docx?)">|<a href="(\./P\d+?\.pdf)">‘)[0][1:] url_final = pre_final+ url_extract print ("-"*10,url_final,"-"*10) item["content"] = "" try: file =urllib.request.urlopen(url_final).read() filepath = r"C:\\Users\\tc\\fkyj\\fkyj\\files\\" filetype = url_extract.split(".")[1] with open(filepath+item["name"]+"."+filetype,‘wb‘) as f: f.write(file) except urllib.request.HTTPError: item["content"] = "wrong:HTTPERROR" yield item
这里不足之处在于没有体现针对不同网站书写不同代码,建议建立不同callback函数
建议思路:
parse():正对初始网址
parse_page:针对导航页
parse_item:提取公司名称与日期
parse_doc:提取doc文档
---------------------------------------------------------------------pipeitem代码-------------------------------------------------------------
import pymysql
class FkyjPipeline(object):
def __init__(self):
#连接数据库
self.con = pymysql.connect(host=‘localhost‘, port=3306, user=‘root‘, passwd="密码",db="数据库名字")
def process_item(self, item, spider):
name = item["name"]
date = item["date"]
content = item["content"]
self.con.query("Insert Into zjh_fkyj.fkyj(name,date_fk,content) Values(‘" + name + "‘,‘" + date + "‘,‘"+content+"‘)")
#必须要提交,否则没用
self.con.commit()
return item
def close_spider(self):
#在运行时关闭数据库
self.con.close()
2,分析用代码--主要部分
import pandas as pd
data =pd.read_csv(r"C:\\Users\\tc\\fkyj\\fkyj.csv")
data.columns
data.drop(["Unnamed: 0",‘id‘],axis=1,inplace = True)
def get_year_month(datetime):
return "-".join(datetime.split("-")[:2])
group_month_data = data.groupby(data["date"].apply(get_year_month)).count()
get_year_month("2017-2-1")
%matplotlib
group_month_data["name"].plot(kind="bar")
import matplotlib.pyplot as plt
from matplotlib import font_manager
zh_font = font_manager.FontProperties(fname=r‘c:\windows\fonts\simsun.ttc‘, size=14)
fig, ax = plt.subplots()
width =0.35
ax.set_xticks(ticks=range(len(group_month_data)))
plt.xticks(rotation=20)
res = ax.bar(left = range(len(group_month_data)),height=group_month_data["name"])
ax.set_title("证监会反馈意见",fontproperties=zh_font)
ax.set_ylabel("数量",fontproperties=zh_font)
ax.set_xticklabels( i for i in (group_month_data.index.values))
plt.show()
ax.set_xticklabels(group_month_data.index.values)
plt.show()
group_month_data.index.values
len(group_month_data)
china_map = [("北京","|东城|西城|崇文|宣武|朝阳|丰台|石景山|海淀|门头沟|房山|通州|顺义|昌平|大兴|平谷|怀柔|密云|延庆"),
("上海","|黄浦|卢湾|徐汇|长宁|静安|普陀|闸北|虹口|杨浦|闵行|宝山|嘉定|浦东|金山|松江|青浦|南汇|奉贤|崇明"),
("天津","|和平|东丽|河东|西青|河西|津南|南开|北辰|河北|武清|红挢|塘沽|汉沽|大港|宁河|静海|宝坻|蓟县"),
("重庆","|万州|涪陵|渝中|大渡口|江北|沙坪坝|九龙坡|南岸|北碚|万盛|双挢|渝北|巴南|黔江|长寿|綦江|潼南|铜梁|大足|荣昌|壁山|梁平|城口|丰都|垫江|武隆|忠县|开县|云阳|奉节|巫山|巫溪|石柱|秀山|酉阳|彭水|江津|合川|永川|南川"),
("河北","|石家庄|邯郸|邢台|保定|张家口|承德|廊坊|唐山|秦皇岛|沧州|衡水"),
("山西","|太原|大同|阳泉|长治|晋城|朔州|吕梁|忻州|晋中|临汾|运城"),
("内蒙古","|呼和浩特|包头|乌海|赤峰|呼伦贝尔盟|阿拉善盟|哲里木盟|兴安盟|乌兰察布盟|锡林郭勒盟|巴彦淖尔盟|伊克昭盟"),
("辽宁","|沈阳|大连|鞍山|抚顺|本溪|丹东|锦州|营口|阜新|辽阳|盘锦|铁岭|朝阳|葫芦岛"),
("吉林","|长春|吉林|四平|辽源|通化|白山|松原|白城|延边"),
("黑龙江","|哈尔滨|齐齐哈尔|牡丹江|佳木斯|大庆|绥化|鹤岗|鸡西|黑河|双鸭山|伊春|七台河|大兴安岭"),
("江苏","|南京|镇江|苏州|南通|扬州|盐城|徐州|连云港|常州|无锡|宿迁|泰州|淮安"),
("浙江","|杭州|宁波|温州|嘉兴|湖州|绍兴|金华|衢州|舟山|台州|丽水"),
("安徽","|合肥|芜湖|蚌埠|马鞍山|淮北|铜陵|安庆|黄山|滁州|宿州|池州|淮南|巢湖|阜阳|六安|宣城|亳州"),
("福建","|福州|厦门|莆田|三明|泉州|漳州|南平|龙岩|宁德"),
("江西","|南昌市|景德镇|九江|鹰潭|萍乡|新馀|赣州|吉安|宜春|抚州|上饶"),
("山东","|济南|青岛|淄博|枣庄|东营|烟台|潍坊|济宁|泰安|威海|日照|莱芜|临沂|德州|聊城|滨州|菏泽"),
("河南","|郑州|开封|洛阳|平顶山|安阳|鹤壁|新乡|焦作|濮阳|许昌|漯河|三门峡|南阳|商丘|信阳|周口|驻马店|济源"),
("湖北","|武汉|宜昌|荆州|襄樊|黄石|荆门|黄冈|十堰|恩施|潜江|天门|仙桃|随州|咸宁|孝感|鄂州"),
("湖南","|长沙|常德|株洲|湘潭|衡阳|岳阳|邵阳|益阳|娄底|怀化|郴州|永州|湘西|张家界"),
("广东","|广州|深圳|珠海|汕头|东莞|中山|佛山|韶关|江门|湛江|茂名|肇庆|惠州|梅州|汕尾|河源|阳江|清远|潮州|揭阳|云浮"),
("广西","|南宁|柳州|桂林|梧州|北海|防城港|钦州|贵港|玉林|南宁地区|柳州地区|贺州|百色|河池"),
("海南","|海口|三亚"),
("四川","|成都|绵阳|德阳|自贡|攀枝花|广元|内江|乐山|南充|宜宾|广安|达川|雅安|眉山|甘孜|凉山|泸州"),
("贵州","|贵阳|六盘水|遵义|安顺|铜仁|黔西南|毕节|黔东南|黔南"),
("云南","|昆明|大理|曲靖|玉溪|昭通|楚雄|红河|文山|思茅|西双版纳|保山|德宏|丽江|怒江|迪庆|临沧"),
("西藏","|拉萨|日喀则|山南|林芝|昌都|阿里|那曲"),
("陕西","|西安|宝鸡|咸阳|铜川|渭南|延安|榆林|汉中|安康|商洛"),
("甘肃","|兰州|嘉峪关|金昌|白银|天水|酒泉|张掖|武威|定西|陇南|平凉|庆阳|临夏|甘南"),
("宁夏","|银川|石嘴山|吴忠|固原"),
("青海","|西宁|海东|海南|海北|黄南|玉树|果洛|海西"),
("新疆","|乌鲁木齐|石河子|克拉玛依|伊犁|巴音郭勒|昌吉|克孜勒苏柯尔克孜|博尔塔拉|吐鲁番|哈密|喀什|和田|阿克苏"),
("香港",""),
("澳门",""),
("台湾","|台北|高雄|台中|台南|屏东|南投|云林|新竹|彰化|苗栗|嘉义|花莲|桃园|宜兰|基隆|台东|金门|马祖|澎湖")]
city_map = {}
for i in china_map:
if i != "澳门" or i != "香港":
city_map[i[0]] = i[1].split("|")[1:]
elif i == "澳门" or i == "香港":
city_map[i[0]] = ""
def get_province(name,con_loc = False):
keys = city_map.keys()
for j in keys:
if j in name:
province = j
location = "province"
break
else:
for k in city_map[j]:
if k in name:
province = j
location = "city"
break
else:
province = "unknow"
location = "unknow"
if con_loc:
return (province,location)
else:
return province
#count the name that contain the location
data["province"] = data["name"].apply(get_province)
data["name"][:5]
data["province"][:20]
name_data = data.groupby(data["province"]).count()["name"]
fig, ax = plt.subplots()
width =0.35
ax.set_xticks(ticks=range(len(name_data)))
plt.xticks(rotation=60)
res = ax.bar(left = range(len(name_data)),height= name_data)
ax.set_title("反馈意见--公司名称是否含有地域信息",fontproperties=zh_font)
ax.set_ylabel("数量",fontproperties=zh_font)
ax.set_xticklabels( [i for i in name_data.index.values],fontproperties=zh_font)
plt.show()
import jieba
jieba.load_userdict(r"C:\\ProgramData\\Anaconda3\\Lib\\site-packages\\jieba\\userdict.txt")
import re
def remove_rn(data):
return re.sub("[\\n\\r]+","",data)
remove_rn("\r\n\r")
data["content"] = data["content"].apply(remove_rn)
data["content"][:1]
remove_rn("\r\n\r45463")
data["content"] = data["content"].astype(str)
f1 = open(r"C:\Users\tc\Desktop\user_dict.txt",encoding ="utf-8")
f2 = open(r"C:\Users\tc\Desktop\userdict.txt","w")
for i in f1.readlines():
f2.write(i[:-1] + " 5 n\n")
f1.close()
f2.close()
list(jieba.cut("hellotc") )
list(jieba.cut("我是唐诚的弟弟"))
type(pd.Series(list( jieba.cut(data["content"][1]))).value_counts())
s = pd.Series([0 for i in len(data["content"])],index = )
for i in data["content"]:
pd.Series(list( jieba.cut(data["content"][1]))).value_counts()
s1 = pd.Series(range(3),index = ["a","b","c"])
s2 = pd.Series(range(3),index = ["d","b","c"])
s1.add(s2,fill_value=0)
def add_series(s1,s2):
r = {}
s1 = s1.to_dict()
s2 = s2.to_dict()
common = set(s1.keys()).intersection(s2.keys())
for i in common:
r[i] = s1[i]+s2[i]
for j in set(s1.keys()).difference(s2.keys()):
r[j] = s1[j]
for k in set(s2.keys()).difference(s1.keys()):
r[k] = s2[k]
return pd.Series(r)
series_list = []
for i in data["content"]:
series_list.append(pd.Series(list( jieba.cut(i))).value_counts())
start = pd.Series([0,0],index = [‘a‘,‘b‘])
for i in series_list:
start = add_series(start,i)
start[:4]
start.sort_values()
start.to_csv(r"C:\\Users\\tc\\fkyj\\rank_word.csv")
标签:val set docx 有限公司 上海 sort bsp 文件 text
原文地址:http://www.cnblogs.com/run-tc/p/7641474.html