码迷,mamicode.com
首页 > 其他好文 > 详细

TensorBoard 实践

时间:2017-10-09 19:46:35      阅读:292      评论:0      收藏:0      [点我收藏+]

标签:amp   0.00   read   训练   span   命名   esc   next   优化方法   

通过对命名空间管理,改进代码,使得可视化效果图更加清晰。

#
coding=utf8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 TRAINING_STEPS = 3000 MOVING_AVERAGE_DECAY = 0.99 def train(mnist): # 输入数据的命名空间。 with tf.name_scope(input): x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name=x-input) y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name=y-input) regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) y = mnist_inference.inference(x, regularizer) global_step = tf.Variable(0, trainable=False) # 处理滑动平均的命名空间。 with tf.name_scope("moving_average"): variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。 with tf.name_scope("loss_function"): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection(losses)) # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。 with tf.name_scope("train_step"): learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY, staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name=train) writer = tf.summary.FileWriter("./log/modified_mnist_train.log", tf.get_default_graph()) # 训练模型。 with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) if i % 1000 == 0: # 配置运行时需要记录的信息。 run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # 运行时记录运行信息的proto。 run_metadata = tf.RunMetadata() _, loss_value, step = sess.run( [train_op, loss, global_step], feed_dict={x: xs, y_: ys}, options=run_options, run_metadata=run_metadata) writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d" % i), global_step=i) print("After %d training step(s), loss on training batch is %g." % (step, loss_value)) else: _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) writer.close() def main(argv=None): mnist = input_data.read_data_sets("MNIST_data", one_hot=True) train(mnist) if __name__ == __main__: main()

 

可视化效果图:

技术分享

 

TensorBoard 实践

标签:amp   0.00   read   训练   span   命名   esc   next   优化方法   

原文地址:http://www.cnblogs.com/pengwang57/p/7642480.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!