码迷,mamicode.com
首页 > 其他好文 > 详细

九种常用排序的性能分析总结

时间:2014-09-10 22:20:51      阅读:326      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   ar   strong   数据   art   div   sp   

转自:http://blog.csdn.net/cjf_iceking/article/details/7953637

 

间间断断的将9种排序实现,并且将其以博客笔记的形式记录下来;现在就该来综合的分析这九种排序,让我们先来看看其算法复杂度和稳定性的分析结果:

算法复杂度以及稳定性分析

算法名称 平均时间 辅助空间 稳定性
冒泡排序 O(n2) O(1)
选择排序 O(n2) O(1)
插入排序 O(n2) O(1)
自底向上归并排序 O(nlog2n) O(n)
自顶向下归并排序 O(nlog2n) O(n)
快速排序 O(nlog2n) O(n)
堆排序 O(nlog2n) O(1)
基数排序 O(dn) O(rn)
希尔排序 \ O(1)

排序的时间效率比较

下图表名了各种算法在不同数据规模下,完成排序所消耗的时间(毫秒为单位),从表中可以显然看出O(n2)的排序算法比O(nlog2n)的算法 时间多出几百上千倍,而且随着数据数据规模增大时间比也会随着增大;因为排序的数据采用随机数,顺序将被打乱,快速排序算法优于其他排序算法!
算法名称 1万 2万 3万 4万 5万 6万 7万 8万 9万 10万
冒泡排序 1442 5497 12206 21861 34017 49148 67394 88880 111939 139071
选择排序 199 816 1790 3254 5062 7166 9645 12636 16102 19643
插入排序 178 717 1628 2882 4458 6446 8822 11649 14547 17914
自底向上归并排序 3 6 9 12 15 18 22 26 28 33
自顶向下归并排序 3 7 11 15 18 23 27 31 36 40
快速排序 2 5 8 11 14 18 21 25 29 32
堆排序 3 7 12 16 19 23 26 30 34 37
基数排序 9 21 30 40 49 59 66 75 90 98
希尔排序 3 8 11 15 24 24 29 35 40 41

下面采用图表形式将数据直观展示出来(将O(n2)的算法和O(nlog2n)算法分开,因为完全不是一个数量级的):
bubuko.com,布布扣
bubuko.com,布布扣
上图显示快排速度和自底向上归并排序奇虎相当,接下来是堆排序、希尔排序;出乎意料的是基数排序,号称O(dn)的基数排序却不是那么靠前,个人觉得和冒泡排序速度慢的原因相同,赋值操作太多,降低了时间效率。
 
 
修正更新:
 2012-9-13
【1】 修改归并排序的代码,并重新生成测试结果 
【2】 上传九种排序的实现代码(下载地址:http://download.csdn.net/detail/cjf_iceking/4567202

 

九种常用排序的性能分析总结

标签:style   blog   http   ar   strong   数据   art   div   sp   

原文地址:http://www.cnblogs.com/x_wukong/p/3965229.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!