码迷,mamicode.com
首页 > 其他好文 > 详细

mapreduce深入剖析5大视频

时间:2017-10-11 17:19:33      阅读:175      评论:0      收藏:0      [点我收藏+]

标签:groups   ext   frame   ast   alt   nal   dfs   格式   row   

技术分享

技术分享

技术分享

技术分享

技术分享

 

 技术分享

 

 技术分享

 

 技术分享

技术分享

 

技术分享

 

 技术分享

 

参考代码

TVPlayCount.java

package com.dajiangtai.hadoop.tvplay;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import com.sun.org.apache.bcel.internal.generic.NEW;

public class TVPlayCount extends Configured implements Tool{

    
    public static class TVPlayMapper extends Mapper<Text, TVPlayData, Text, TVPlayData>{
        @Override
        protected void map(Text key, TVPlayData value,Context context) 
                throws IOException, InterruptedException
                {
                     context.write(key, value);
                }
    }
    
    public static class TVPlayReducer extends Reducer<Text, TVPlayData, Text, Text>
    {
        private Text m_key=new Text();
        private Text m_value = new Text();
        private MultipleOutputs<Text, Text> mos;
        
        //将多路输出打开
        protected void setup(Context context) throws IOException,InterruptedException 
        {
            mos = new MultipleOutputs<Text, Text>(context);
        }
        
        protected void reduce (Text Key,Iterable<TVPlayData> Values, Context context)
                throws IOException, InterruptedException{
            int daynumber = 0;
            int collectnumber = 0;
            int commentnumber = 0;
            int againstnumber = 0;
            int supportnumber = 0;
            
            for (TVPlayData tv : Values){
                daynumber+=tv.getDaynumber();
                collectnumber+=tv.getCollectnumber();
                commentnumber += tv.getCommentnumber();
                againstnumber += tv.getAgainstnumber();
                supportnumber += tv.getSupportnumber();
            }
          
            String[] records=Key.toString().split("\t");
            
            // 1优酷 2搜狐   3 土豆    4爱奇艺    5迅雷看看
            String source =records[1]; // 媒体类别
            m_key.set(records[0]);
            m_value.set(daynumber+"\t"+collectnumber+"\t" +commentnumber+"\t"+againstnumber+"\t"+supportnumber);
        if(source.equals("1")){
            mos.write("youku", m_key, m_value);
        }else if (source.equals("2")) {
            mos.write("souhu", m_key, m_value);
        } else if (source.equals("3")) {
            mos.write("tudou", m_key, m_value);
        } else if (source.equals("4")) {
            mos.write("aiqiyi", m_key, m_value);
        } else if (source.equals("5")) {
            mos.write("xunlei", m_key, m_value);
        }
    }
        
        //关闭 MultipleOutputs,也就是关闭 RecordWriter,并且是一堆 RecordWriter,因为这里会有很多 reduce 被调用。
    protected void cleanup( Context context) throws IOException,InterruptedException     {
        mos.close();
    }
}
    
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = new Configuration(); // 配置文件对象
        Path mypath = new Path(args[1]);
        FileSystem hdfs = mypath.getFileSystem(conf);// 创建输出路径
        if (hdfs.isDirectory(mypath)) {
            hdfs.delete(mypath, true);
        }
        
        Job job = new Job(conf, "tvplay");// 构造任务
        job.setJarByClass(TVPlayCount.class);// 设置主类

        job.setMapperClass(TVPlayMapper.class);// 设置Mapper
        job.setMapOutputKeyClass(Text.class);// key输出类型
        job.setMapOutputValueClass(TVPlayData.class);// value输出类型
        job.setInputFormatClass(TVPlayInputFormat.class);//自定义输入格式

        job.setReducerClass(TVPlayReducer.class);// 设置Reducer
        job.setOutputKeyClass(Text.class);// reduce key类型
        job.setOutputValueClass(Text.class);// reduce value类型
        // 自定义文件输出格式,通过路径名(pathname)来指定输出路径
        MultipleOutputs.addNamedOutput(job, "youku", TextOutputFormat.class,
                Text.class, Text.class);
        MultipleOutputs.addNamedOutput(job, "souhu", TextOutputFormat.class,
                Text.class, Text.class);
        MultipleOutputs.addNamedOutput(job, "tudou", TextOutputFormat.class,
                Text.class, Text.class);
        MultipleOutputs.addNamedOutput(job, "aiqiyi", TextOutputFormat.class,
                Text.class, Text.class);
        MultipleOutputs.addNamedOutput(job, "xunlei", TextOutputFormat.class,
                Text.class, Text.class);
        
        FileInputFormat.addInputPath(job, new Path(args[0]));// 输入路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));// 输出路径
        job.waitForCompletion(true);
        return 0;
    }

    public static void main(String[] args) throws Exception{
        String[] args0={"hdfs://master:9000/tvplay/",
        "hdfs://master:9000/tvplay/out"};
    int ec = ToolRunner.run(new Configuration(), new TVPlayCount(), args0);
    System.exit(ec);
    }
}

 

 

TVPlayData.java

package com.dajiangtai.hadoop.tvplay;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;
/**
 * 
 * @author yangjun
 * @function 自定义对象
 */
public class TVPlayData implements WritableComparable<Object>{
    private int daynumber;
    private int collectnumber;
    private int commentnumber;
    private int againstnumber;
    private int supportnumber;
    public TVPlayData(){}
    public void set(int daynumber,int collectnumber,int commentnumber,int againstnumber,int supportnumber){
        this.daynumber = daynumber;
        this.collectnumber = collectnumber;
        this.commentnumber = commentnumber;
        this.againstnumber = againstnumber;
        this.supportnumber = supportnumber;
    }
    public int getDaynumber() {
        return daynumber;
    }
    public void setDaynumber(int daynumber) {
        this.daynumber = daynumber;
    }
    public int getCollectnumber() {
        return collectnumber;
    }
    public void setCollectnumber(int collectnumber) {
        this.collectnumber = collectnumber;
    }
    public int getCommentnumber() {
        return commentnumber;
    }
    public void setCommentnumber(int commentnumber) {
        this.commentnumber = commentnumber;
    }
    public int getAgainstnumber() {
        return againstnumber;
    }
    public void setAgainstnumber(int againstnumber) {
        this.againstnumber = againstnumber;
    }
    public int getSupportnumber() {
        return supportnumber;
    }
    public void setSupportnumber(int supportnumber) {
        this.supportnumber = supportnumber;
    }
    @Override
    public void readFields(DataInput in) throws IOException {
        daynumber = in.readInt();
        collectnumber = in.readInt();
        commentnumber = in.readInt();
        againstnumber = in.readInt();
        supportnumber = in.readInt();
    }
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(daynumber);
        out.writeInt(collectnumber);
        out.writeInt(commentnumber);
        out.writeInt(againstnumber);
        out.writeInt(supportnumber);
    }
    @Override
    public int compareTo(Object o) {
        return 0;
    };
}

 

 

TVPlayInputFormat.java

package com.dajiangtai.hadoop.tvplay;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.util.LineReader;
/**
 * 
 * @author yangjun
 * @function key vlaue 输入格式
 */
public class TVPlayInputFormat extends FileInputFormat<Text,TVPlayData>{

    @Override
    public RecordReader<Text, TVPlayData> createRecordReader(InputSplit input,
            TaskAttemptContext context) throws IOException, InterruptedException {
        return new TVPlayRecordReader();
    }

    public class TVPlayRecordReader extends RecordReader<Text, TVPlayData>{
        public LineReader in;  
        public Text lineKey; 
        public TVPlayData lineValue;
        public Text line;
        @Override
        public void close() throws IOException {
            if(in !=null){
                in.close();
            }
        }

        @Override
        public Text getCurrentKey() throws IOException, InterruptedException {
            return lineKey;
        }

        @Override
        public TVPlayData getCurrentValue() throws IOException, InterruptedException {
            return lineValue;
        }

        @Override
        public float getProgress() throws IOException, InterruptedException {
            return 0;
        }

        @Override
        public void initialize(InputSplit input, TaskAttemptContext context)
                throws IOException, InterruptedException {
            FileSplit split=(FileSplit)input;  
            Configuration job=context.getConfiguration();  
            Path file=split.getPath();  
            FileSystem fs=file.getFileSystem(job);  
              
            FSDataInputStream filein=fs.open(file); 
            in=new LineReader(filein,job); 
            line=new Text();  
            lineKey=new Text();
            lineValue = new TVPlayData();
        }

        @Override
        public boolean nextKeyValue() throws IOException, InterruptedException {
            int linesize=in.readLine(line); 
            if(linesize==0)  return false; 
            String[] pieces = line.toString().split("\t"); 
            if(pieces.length != 7){  
                throw new IOException("Invalid record received");  
            }
            lineKey.set(pieces[0]+"\t"+pieces[1]);
            lineValue.set(Integer.parseInt(pieces[2]),Integer.parseInt(pieces[3]),Integer.parseInt(pieces[4])
                    ,Integer.parseInt(pieces[5]),Integer.parseInt(pieces[6]));
            return true;
        }
    }
}

 

 先启动3节点集群

技术分享

 

与自己在本地搭建的3节点集群的hdfs连接上

技术分享

 

 在终端显示的运行结果,程序没有错误

技术分享

 

2017-10-11 16:04:55,893 INFO [org.apache.hadoop.conf.Configuration.deprecation] - session.id is deprecated. Instead, use dfs.metrics.session-id
2017-10-11 16:04:55,899 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2017-10-11 16:04:56,987 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2017-10-11 16:04:56,993 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2017-10-11 16:04:57,229 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 1
2017-10-11 16:04:57,354 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:1
2017-10-11 16:04:57,426 INFO [org.apache.hadoop.conf.Configuration.deprecation] - user.name is deprecated. Instead, use mapreduce.job.user.name
2017-10-11 16:04:57,428 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
2017-10-11 16:04:57,429 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
2017-10-11 16:04:57,430 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
2017-10-11 16:04:57,430 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.job.name is deprecated. Instead, use mapreduce.job.name
2017-10-11 16:04:57,430 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
2017-10-11 16:04:57,431 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
2017-10-11 16:04:57,431 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
2017-10-11 16:04:57,431 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
2017-10-11 16:04:57,432 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
2017-10-11 16:04:57,433 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
2017-10-11 16:04:57,434 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class
2017-10-11 16:04:57,434 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
2017-10-11 16:04:58,164 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local300699497_0001
2017-10-11 16:04:58,336 WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/staging/Administrator300699497/.staging/job_local300699497_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval;  Ignoring.
2017-10-11 16:04:58,337 WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/staging/Administrator300699497/.staging/job_local300699497_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts;  Ignoring.
2017-10-11 16:04:58,864 WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local300699497_0001/job_local300699497_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval;  Ignoring.
2017-10-11 16:04:58,865 WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local300699497_0001/job_local300699497_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts;  Ignoring.
2017-10-11 16:04:58,904 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2017-10-11 16:04:58,906 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local300699497_0001
2017-10-11 16:04:58,953 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2017-10-11 16:04:58,984 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2017-10-11 16:04:59,233 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2017-10-11 16:04:59,234 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local300699497_0001_m_000000_0
2017-10-11 16:04:59,451 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2017-10-11 16:04:59,900 INFO [org.apache.hadoop.mapred.Task] -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@1b9156ad
2017-10-11 16:04:59,908 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: hdfs://master:9000/tvplay/tvplay.txt:0+10833923
2017-10-11 16:04:59,910 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local300699497_0001 running in uber mode : false
2017-10-11 16:04:59,952 INFO [org.apache.hadoop.mapreduce.Job] -  map 0% reduce 0%
2017-10-11 16:04:59,987 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2017-10-11 16:05:00,170 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2017-10-11 16:05:00,170 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2017-10-11 16:05:00,170 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2017-10-11 16:05:00,170 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2017-10-11 16:05:00,170 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2017-10-11 16:05:03,511 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 
2017-10-11 16:05:03,545 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2017-10-11 16:05:03,545 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2017-10-11 16:05:03,545 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 12652147; bufvoid = 104857600
2017-10-11 16:05:03,545 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 24882940(99531760); length = 1331457/6553600
2017-10-11 16:05:04,913 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2017-10-11 16:05:04,924 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local300699497_0001_m_000000_0 is done. And is in the process of committing
2017-10-11 16:05:04,998 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2017-10-11 16:05:04,998 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local300699497_0001_m_000000_0 done.
2017-10-11 16:05:04,998 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local300699497_0001_m_000000_0
2017-10-11 16:05:04,999 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Map task executor complete.
2017-10-11 16:05:05,047 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2017-10-11 16:05:05,366 INFO [org.apache.hadoop.mapred.Task] -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@fba110e
2017-10-11 16:05:05,417 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2017-10-11 16:05:05,484 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 13317874 bytes
2017-10-11 16:05:05,485 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 
2017-10-11 16:05:05,578 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2017-10-11 16:05:05,978 INFO [org.apache.hadoop.mapreduce.Job] -  map 100% reduce 0%
2017-10-11 16:05:07,669 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local300699497_0001_r_000000_0 is done. And is in the process of committing
2017-10-11 16:05:07,675 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 
2017-10-11 16:05:07,675 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local300699497_0001_r_000000_0 is allowed to commit now
2017-10-11 16:05:07,716 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task attempt_local300699497_0001_r_000000_0 to hdfs://master:9000/tvplay/out/_temporary/0/task_local300699497_0001_r_000000
2017-10-11 16:05:07,717 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2017-10-11 16:05:07,717 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local300699497_0001_r_000000_0 done.
2017-10-11 16:05:07,978 INFO [org.apache.hadoop.mapreduce.Job] -  map 100% reduce 100%
2017-10-11 16:05:07,979 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local300699497_0001 completed successfully
2017-10-11 16:05:08,015 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 32
    File System Counters
        FILE: Number of bytes read=13318207
        FILE: Number of bytes written=27040248
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=21667846
        HDFS: Number of bytes written=195234
        HDFS: Number of read operations=17
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=11
    Map-Reduce Framework
        Map input records=332865
        Map output records=332865
        Map output bytes=12652147
        Map output materialized bytes=13317883
        Input split bytes=101
        Combine input records=0
        Combine output records=0
        Reduce input groups=5741
        Reduce shuffle bytes=0
        Reduce input records=332865
        Reduce output records=0
        Spilled Records=665730
        Shuffled Maps =0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=74
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=705691648
    File Input Format Counters 
        Bytes Read=10833923
    File Output Format Counters 
        Bytes Written=0

 

 查看hdfs上的输出结果

技术分享

 

 技术分享

 

mapreduce深入剖析5大视频

标签:groups   ext   frame   ast   alt   nal   dfs   格式   row   

原文地址:http://www.cnblogs.com/braveym/p/7643551.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!