标签:numpy UI export orb without imm qt4 svd 安装路径
在ubuntu16.04安装caffe,几乎折腾了一个月终于成功;做一文章做纪要,以便日后查阅。总体得出的要点是:首先,每操作一步,必须知道如何检验操作的正确性;笔者的多次失误是因为配置错误,但疏于检查引起;当然有些错误是ubuntu本身的bug;笔者不知,只能来来回回‘鬼打墙’直到某日发现;另一个经验只谈是对每一个支撑尽量知道它是用来干什么的,多百度几下没有坏处;最后一个经验是,对系统的基本结构要要框架了解,比如,通过apt-get的软件放在哪里,通过make install的软件又放在哪里;还有,编译的时候各种文件支持和路径支持在什么地方,这些诸多要素只能是点点滴滴积累。
本次安装目标:
1)保证是GPU版本的;
2)保证对Python支持;
这个过程基本没啥说的,有三个要点;
1)需要选择中文(否则就等着重装吧!);
2)要有WIFI先连上,这样省点时间;
3)安装好以后,进入系统; 立刻执行
>>>sudo apt-get update
>>>sudo apt-get upgrade
出现:AppStream cache update completed, but some metadata was ignored due to errors;或
error message due to invalid AppStream file
这是ubuntu本身的bug,参考文;笔者是通过更换数据源反复执行sudo
apt-get update和sudo
apt-get upgrade完成,注意,这步很重要,很多编译错误从这里产生。
出现:
下列软件包的版本将保持不变:
gnome-software gnome-software-common liboxideqt-qmlplugin
liboxideqtcore0
liboxideqtquick0 oxideqt-codecs snapd
ubuntu-core-launcher ubuntu-software
升级了
0
个软件包,新安装了
0
个软件包,要卸载
0
个软件包,有
9
个软件包未被升级
解决:sudo apt-get install gnome-software
sudo apt-getinstall liboxideqt-qmlplugin
sudo apt-get install snapd
一般不必装9个就可以,因为互相依赖,每装一个,同时将依赖包装好。 2.3安装质量检验
sudo apt-get update
sudo apt-get upgrade
最后出现下面提示就OK了:
升级了 0 个软件包,新安装了 0 个软件包,要卸载 0 个软件包,有 0 个软件包未被升级,
到此,ubuntu安装成功!
sudo
add-apt-repository ppa:graphics-drivers/ppa
(回车后继续)
sudo
apt-get update
sudo
apt-get install nvidia-367
sudo
apt-get install mesa-common-dev
sudo
apt-get install freeglut3-dev
3.2 重新启动操作系统
之后重启系统让GTX1060显卡驱动生效 。
进入全新界面,立刻执行
sudo apt-get update 和 sudo apt-get upgrade 这一对指令。
3.3 安装质量检验
1检查指令:
运行:nvidia-smi 和nvidia-settings 分别看到效果;
** Message: PRIME: No offloading required. Abort
** Message: PRIME: is it supported? No
这种提示属于正常。
2 检查程序;测试OpenGL:
#include <GL/glut.h>
void init(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glMatrixMode(GL_PROJECTION);
glOrtho(-5, 5, -5, 5, 5, 15);
glMatrixMode(GL_MODELVIEW);
gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);
return;
}
void display(void)
{
glClear(GL_COLOR_BUFFER_BIT);
glColor3f(1.0, 0, 0);
glutWireTeapot(3);
glFlush();
return;
}
int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);
glutInitWindowPosition(0, 0);
glutInitWindowSize(300, 300);
glutCreateWindow("OpenGL 3D View");
init();
glutDisplayFunc(display);
glutMainLoop();
return 0;
}
编译程序:gcc -o test test.c -lGL -lGLU -lglut
test:执行后显示窗口。
3.4 另一法--安装Nvidia显卡驱动
首先,禁用可能导致问题的开源驱动,编辑/etc/modprobe.d/blacklist.conf
;
sudo vim /etc/modprobe.d/blacklist.conf
添加以下内容:
blacklist amd76x_edac
blacklist vga16fb
blacklist nouveau
blacklist nvidiafb
blacklist rivatv
卸载干净所有安装过的nvidia驱动;
sudo apt-get remove --purge nvidia-*
执行以下命令添加驱动源;
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
以下步骤建议Ctrl+Alt+F1
切换到tty1
执行;
sudo service lightdm stop
sudo apt-get install nvidia-375 nvidia-settings nvidia-prime
sudo nvidia-xconfig
sudo apt-get install mesa-common-dev //
安装缺少的库
sudo apt-get install freeglut3-dev
sudo update-initramfs -u
sudo reboot
重启应该就不会遇到循环登录的问题;
下载 cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
将它存入目录/home/tmp,并进入>>>cd /home/tmp,接着执行:
>>>sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
>>>sudo apt-get update
>>>sudo apt-get install cuda
配置环境变量1:
执行
>>> sudo gedit ~/.bashrc
进入gedit编辑器,在文件的尾部,加入:
export PATH="/usr/local/cuda-8.0/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH"
更周全的写法是:
if
[ ! -n "$PATH" ] ;then
export PATH="/usr/local/cuda-8.0/bin"
else
export PATH="/usr/local/cuda-8.0/bin:$PATH"
fi
if [ ! -n "$LD_LIBRARY_PATH" ]
;then
export
LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64"
else
export
LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH"
fi
存盘退出;执行:
>>> source ~/.bashrc
(此处最好用
echo
$PATH echo $LD_LIBRARY_PATH 检查一下有没有错误,非常重要!!)
配置环境变量2:
执行:
>>>
sudo gedit /etc/profile
在打开的文件末尾加入:
export PATH="/usr/local/cuda/bin:$PATH"
(等号后不可有空格)
更严密的写法:
if
[ ! -n "$PATH" ] ;then
export PATH="/usr/local/cuda/bin"
else
export PATH="/usr/local/cuda/bin:$PATH"
fi
创造链接:
>>> sudo gedit
/etc/ld.so.conf.d/cuda.conf
在打开的文件末尾加入:(此时为空文件)
/usr/local/cuda/lib64
然后执行:
>>> sudo ldconfig
进入cuda的安装路径,
>>>
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
编译:
>>>
sudo make
>>>
sudo ./deviceQuery
(执行编译后的测试程序)
显示:
一整屏幕的信息
;
最后一句是:
Result = PASS
此时说明
cuda
安装成功,因为后面的操作可能破坏
cuda
,操作前后经常检查
cuda
是否
OK.
第五章
安装
CUDNN5.1
和
python
5.1
安装
cudnn
部分
下载
cudnn
,费时很长,建议下载后保存。
解压:
tar
-zxvf cudnn-8.0-linux-x64-v5.1.tgz
此步骤后,生成
cuda
目录
;
进入
cuda
后,有
include
和
lib64
两个子目录
。进入
include
目录:
sudo
cp cudnn.h /usr/local/cuda/include/
#
复制头文件
退出
include;
进入
lib64
目录:
sudo cp lib* /usr/local/cuda/lib64/ #
复制动态链接库
进入目标目录:
cd /usr/local/cuda/lib64/
修改文件软链接:
sudo rm -rf libcudnn.so libcudnn.so.5 #
删除原有动态文件
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 #
生成软衔接
sudo ln -s libcudnn.so.5 libcudnn.so #
生成软链接
(
源目录中有两个软链接,
libcudnn.so libcudnn.so.5
,将他们删除,建立你具体版本
5.1.5
的软链接
)
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
给所有用户增加这些文件的读权限
;
5.
2
升级
python
部分
1
基本
python
升级
因为
ubuntu
16
已经默认安装了
python
,所以,出于用
python
开发的目的,现将必须的
python
的相关包安装
;
除此之外,需要将
IDE
开发平台
pycharm
安装进去
;
sudo apt-get install python-numpy
sudo apt-get install python-scipy
sudo apt-get install python-pandas
sudo apt-get install python-sklean
(sudo apt-get install python-matplotlib
sudo apt-get install python-statsmodels
此二者自然装好了
)
2
基本
pycharm
升级
按照官网给出的安装指导【
2
】进行安装。
进入下载目录:
$ cd Downloads/
解压:
$ tar xfz pycharm-*.tar.gz
删除原压缩文件:
$ rm pycharm-*.tar.gz
进入执行文件目录:
$ cd pycharm-community-3.4.1/bin/
执行安装
$
./pycharm.sh
3
测试
python
的环境
from
pylab
import
*
X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C, S = np.cos(X), np.sin(X) plot(X, C) plot(X, S) show()
第六章 关于
OPENCV
opencv
可能偶然装上了,但是编译
opencv
可以检查整个系统的配置过程是否正确,这里先编译
opencv3.1
以验证环境的正确与否。也就说这里将能否编译通过
opencv
作为测试本机工作环境的标尺。可以发现,通过安装
opencv
的支持包,发现系统有许多支持包没有搭建完成。
sudo dpkg --purge cuda-repo-ubuntu1504-7-5-local
6.1
检查
opencv
经过上面的安装,
opencv
可能已经附带安装好,检查如下:
apt-cache search opencv
6.2
安装
opencv
所需的库(编译器、必须库、可选库)
转载请说明 http://www.cnblogs.com/llxrl/p/4471831.html
GCC 4.4.x or later
CMake 2.6 or higher
Git
GTK+2.x or higher, including headers (libgtk2.0-dev)
pkg-config
Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)
ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev
[optional] libtbb2 libtbb-dev
[optional] libdc1394 2.x
[optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev, libdc1394-22-dev
1 [compiler] sudo apt-get install build-essential 2 [required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev 3 [optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
sudo apt-get install libqt4-dev libopencv-dev build-essential cmake git libgtk2.0-dev pkg-config python-dev python-numpy libdc1394-22 libdc1394-22-dev libjpeg-dev libpng12-dev libtiff5-dev libjasper-dev libavcodec-dev libavformat-dev libswscale-dev libxine2-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev libtbb-dev libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev x264 v4l-utils unzip |
从官网下载最新opencv源码(2.4以上)http://sourceforge.net/projects/opencvlibrary/
将opencv放至任意目录/home/myname/tmp,
unzip opencv- 3.0. 0-rc1. zip
cd opencv- 3.0. 0
修改modules/cudalegacy/src/graphcuts.cpp文件:
sudo gedit /tmp/opencv-3.1.0/modules/cudalegacy/src/graphcuts.cpp
将:
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)|
改成:
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)||(CUDART_VERSION>=8000)
存盘退出。
创建编译目录:
mkdir release cd release
编译:
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D WITH_OPENGL=ON -D WITH_QT=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON .. make -j4 sudo make install
mkdir ~/opencv-lena cd ~/opencv-lena gedit DisplayImage.cpp
#include <stdio.h> #include <opencv2/opencv.hpp> using namespace cv; int main(int argc, char** argv ) { if ( argc != 2 ) { printf("usage: DisplayImage.out <Image_Path>\n"); return -1; } Mat image; image = imread( argv[1], 1 ); if ( !image.data ) { printf("No image data \n"); return -1; } namedWindow("Display Image", WINDOW_AUTOSIZE ); imshow("Display Image", image); waitKey(0); return 0; }
gedit CMakeLists.txt
写入如下内容
cmake_minimum_required(VERSION 2.8) project( DisplayImage ) find_package( OpenCV REQUIRED ) add_executable( DisplayImage DisplayImage.cpp ) target_link_libraries( DisplayImage ${OpenCV_LIBS} )
cd ~/opencv-lena cmake . make
此时opencv-lena文件夹中已经产生了可执行文件DisplayImage,下载lena.jpg放在opencv-lena下,运行
./DisplayImage lena.jpg
第七章
python
和
opencv
的关系
7.1
在
python
调用
opencv
opencv
和
python
基本独立,但是,为了在
python
下调用
opencv
,在
opencv
编译的时候,就多出一项
cv
2.so
这个库,将这个库移到
python
的外部包路径上
/usr/lib/python2.7/dist-packages
,就可以调用
opencv
了
ubuntu
系统默认安装了
python
,为了建立
opencv
和
python
的关系,使
python
能够使用
opencv
,则必须安装
cv
2
库,有
如下安装:
sudo apt-get install python-opencv
这样
python
目录下多出一个:
/usr/lib/python2.7/dist-packages/cv2.x86_64-linux-gnu.so
建立软链接:
cd /usr/lib/python2.7/dist-packages
sudo ln -s cv2.x86_64-linux-gnu.so cv
2.so
在
python
中可以
import cv
2
进行调用了。
去caffe的github下载caffe源码包, 进入caffe-master下的python目录.执行如下命令:
cat requirements.txt
Cython>=0.19.2
numpy>=1.7.1
scipy>=0.13.2
scikit-image>=0.9.3
matplotlib>=1.3.1
ipython>=3.0.0
h5py>=2.2.0
leveldb>=0.191
networkx>=1.8.1
nose>=1.3.0
pandas>=0.12.0
python-dateutil>=1.4,<2
protobuf>=2.5.0
python-gflags>=2.0
pyyaml>=3.10
Pillow>=2.3.0
six>=1.1.0
以上包还有它们的依赖,需要以下操作安装:
for req in $(cat requirements.txt); do pip install $req; done
由于依赖包存在先后顺序,首次操作某些包的依赖排在该包的后面安装,因而该包安装无法完成
;
遇到这种情况让它继续进行,当安装完成后
;
再次执行该指令,直到全部安装完成
;
一般需要重复执行两次以上才能完成。
第八章
安装编译
Caffe
8
.1
安装
caffe
基本依赖
sudo
apt-get update
sudo apt-get upgrade
sudo apt-get install -y
build-essential
sudo apt-get install -y cmake
sudo apt-get install -y git
sudo apt-get install -y pkg-config
sudo apt-get install -y libprotobuf-dev
sudo apt-get install -y libleveldb-dev
sudo apt-get install -y libsnappy-dev
sudo apt-get install -y libhdf5-serial-dev
sudo
apt-get install -y protobuf-compiler
sudo apt-get install -y
libatlas-base-dev
sudo apt-get install -y
--no-install-recommends libboost-all-dev
sudo apt-get install
-y libgflags-dev
sudo apt-get install -y libgoogle-glog-dev
sudo
apt-get install -y liblmdb-dev
sudo apt-get install -y
python-pip
sudo apt-get install -y python-dev
sudo apt-get
install -y python-numpy
sudo
apt-get install -y python-scipy
sudo apt-get install -y
libopencv-dev
以上安装除了Python相关的,要保证全部成功,必要时可以修改下载源文件,笔者用阿里源成功。
8
.
2
安装
caffe
基本依赖
终于来到这里了!进入caffe-master目录,复制一份Makefile.config.examples
执行:
cp Makefile.config.example Makefile.config
sudo gedit Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you‘re using OpenCV 3
# OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
#old:INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
#old:LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
8.3编译
>>> make all -j4
cd
caffe-master //
此时位置应该处于
caffe
文件夹下
>>>make
all -j4
// j4
代表计算机
cpu
有
4
个核,因此可以多线程一起
make
,这样
make
的速度会快很多。
>>>make
runtest
-j4 //
检测编译项目
[ OK ] BiasLayerTest/1.TestBackwardEltwiseInPlace (0 ms) [ RUN ] BiasLayerTest/1.TestForwardBroadcastMiddleInPlace [ OK ] BiasLayerTest/1.TestForwardBroadcastMiddleInPlace (0 ms) [ RUN ] BiasLayerTest/1.TestBackwardBroadcastMiddleInPlace [ OK ] BiasLayerTest/1.TestBackwardBroadcastMiddleInPlace (0 ms) [ RUN ] BiasLayerTest/1.TestGradientBroadcastBegin [ OK ] BiasLayerTest/1.TestGradientBroadcastBegin (67 ms) [----------] 20 tests from BiasLayerTest/1 (551 ms total) [----------] Global test environment tear-down [==========] 2085 tests from 277 test cases ran. (321710 ms total) [ PASSED ] 2085 tests. |
>>>make
pycaffe
//
如果以后用
python
来开发的话必须执行这一句,
|
>>>make
distribute
//
一般不管你是否用
python
,都会执行这一句
cp -r src/caffe/proto distribute/ # add include cp -r include distribute/ mkdir -p distribute/include/caffe/proto cp .build_release/src/caffe/proto/caffe.pb.h distribute/include/caffe/proto # add tool and example binaries cp .build_release/tools/caffe.bin .build_release/tools/upgrade_net_proto_binary.bin .build_release/tools/convert_imageset.bin .build_release/tools/finetune_net.bin .build_release/tools/train_net.bin .build_release/tools/device_query.bin .build_release/tools/test_net.bin .build_release/tools/extract_features.bin .build_release/tools/upgrade_net_proto_text.bin .build_release/tools/net_speed_benchmark.bin .build_release/tools/compute_image_mean.bin .build_release/tools/upgrade_solver_proto_text.bin distribute/bin cp .build_release/examples/cpp_classification/classification.bin .build_release/examples/mnist/convert_mnist_data.bin .build_release/examples/siamese/convert_mnist_siamese_data.bin .build_release/examples/cifar10/convert_cifar_data.bin distribute/bin # add libraries cp .build_release/lib/libcaffe.a distribute/lib install -m 644 .build_release/lib/libcaffe.so.1.0.0-rc3 distribute/lib cd distribute/lib; rm -f libcaffe.so; ln -s libcaffe.so.1.0.0-rc3 libcaffe.so # add python - it‘s not the standard way, indeed... cp -r python distribute/python |
常见问题:
1、提示make:protoc:命令未找到,这是因为protoc未安装,只需安装就行。
>>>sudo apt-get install protobuf-c-compiler protobuf-compiler
问题1
/usr/bin/ld: 找不到 -lopencv_imgcodecs
collect2: error: ld returned 1 exit status
Makefile:566: recipe for target ‘.build_release/lib/libcaffe.so.1.0.0-rc3‘ failed
make: *** [.build_release/lib/libcaffe.so.1.0.0-rc3] Error 1
标签:numpy UI export orb without imm qt4 svd 安装路径
原文地址:http://www.cnblogs.com/gongdiwudu/p/7653663.html