码迷,mamicode.com
首页 > 其他好文 > 详细

运维架构服务监控Open-Falcon

时间:2017-10-12 17:02:00      阅读:153      评论:0      收藏:0      [点我收藏+]

标签:技术分享   空间   model   enc   对象   时间   历史   相关   llb   

一、 介绍

监控系统是整个运维环节,乃至整个产品生命周期中最重要的一环,事前及时预警发现故障,事后提供翔实的数据用于追查定位问题。监控系统作为一个成熟的运维产品,业界有很多开源的实现可供选择。当公司刚刚起步,业务规模较小,运维团队也刚刚建立的初期,选择一款开源的监控系统,是一个省时省力,效率最高的方案。之后,随着业务规模的持续快速增长,监控的对象也越来越多,越来越复杂,监控系统的使用对象也从最初少数的几个SRE,扩大为更多的DEVS,SRE。这时候,监控系统的容量和用户的“使用效率”成了最为突出的问题。

 

监控系统业界有很多杰出的开源监控系统。我们在早期,一直在用zabbix,不过随着业务的快速发展,以及互联网公司特有的一些需求,现有的开源的监控系统在性能、扩展性、和用户的使用效率方面,已经无法支撑了。

 

因此,我们在过去的一年里,从互联网公司的一些需求出发,从各位SRE、SA、DEVS的使用经验和反馈出发,结合业界的一些大的互联网公司做监控,用监控的一些思考出发,设计开发了小米的监控系统:open-falcon。

 

二、 特点

1、强大灵活的数据采集:自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags)

2、水平扩展能力:支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询

3、高效率的告警策略管理:高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用

4、人性化的告警设置:最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期

5、高效率的graph组件:单机支撑200万metric的上报、归档、存储(周期为1分钟)

6、高效的历史数据query组件:采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据

7、dashboard:多维度的数据展示,用户自定义Screen

8、高可用:整个系统无核心单点,易运维,易部署,可水平扩展

9、开发语言: 整个系统的后端,全部golang编写,portal和dashboard使用python编写。

 

三、 架构

技术分享

每台服务器,都有安装falcon-agent,falcon-agent是一个golang开发的daemon程序,用于自发现的采集单机的各种数据和指标,这些指标包括不限于以下几个方面,共计200多项指标。

CPU相关

磁盘相关

IO

Load

内存相关

网络相关

端口存活、进程存活

ntp offset(插件)

某个进程资源消耗(插件)

netstat、ss 等相关统计项采集

机器内核配置参数

只要安装了falcon-agent的机器,就会自动开始采集各项指标,主动上报,不需要用户在server做任何配置(这和zabbix有很大的不同),这样做的好处,就是用户维护方便,覆盖率高。当然这样做也会server端造成较大的压力,不过open-falcon的服务端组件单机性能足够高,同时都可以水平扩展,所以自动多采集足够多的数据,反而是一件好事情,对于SRE和DEV来讲,事后追查问题,不再是难题。

 

另外,falcon-agent提供了一个proxy-gateway,用户可以方便的通过http接口,push数据到本机的gateway,gateway会帮忙高效率的转发到server端。

 

四、 数据模型

Data Model是否强大,是否灵活,对于监控系统用户的“使用效率”至关重要。比如以zabbix为例,上报的数据为hostname(或者ip)、metric,那么用户添加告警策略、管理告警策略的时候,就只能以这两个维度进行。举一个最常见的场景:

hostA的磁盘空间,小于5%,就告警。一般的服务器上,都会有两个主要的分区,根分区和home分区,在zabbix里面,就得加两条规则;如果是hadoop的机器,一般还会有十几块的数据盘,还得再加10多条规则,这样就会痛苦,不幸福,不利于自动化(当然zabbix可以通过配置一些自动发现策略来搞定这个,不过比较麻烦)。

 

五、 数据收集

transfer,接收客户端发送的数据,做一些数据规整,检查之后,转发到多个后端系统去处理。在转发到每个后端业务系统的时候,transfer会根据一致性hash算法,进行数据分片,来达到后端业务系统的水平扩展。

 

transfer 提供jsonRpc接口和telnet接口两种方式,transfer自身是无状态的,挂掉一台或者多台不会有任何影响,同时transfer性能很高,每分钟可以转发超过500万条数据。

 

transfer目前支持的业务后端,有三种,judge、graph、opentsdb。judge是我们开发的高性能告警判定组件,graph是我们开发的高性能数据存储、归档、查询组件,opentsdb是开源的时间序列数据存储服务。可以通过transfer的配置文件来开启。

 

transfer的数据来源,一般有三种:

1、falcon-agent采集的基础监控数据

2、falcon-agent执行用户自定义的插件返回的数据

3、client library:线上的业务系统,都嵌入使用了统一的perfcounter.jar,对于业务系统中每个RPC接口的qps、latency都会主动采集并上报

说明:上面这三种数据,都会先发送给本机的proxy-gateway,再由gateway转发给transfer。

 

基础监控是指只要是个机器(或容器)就能加的监控,比如cpu mem net io disk等,这些监控采集的方式固定,不需要配置,也不需要用户提供额外参数指定,只要agent跑起来就可以直接采集上报上去; 非基础监控则相反,比如端口监控,你不给我端口号就不行,不然我上报所有65535个端口的监听状态你也用不了,这类监控需要用户配置后才会开始采集上报的监控(包括类似于端口监控的配置触发类监控,以及类似于mysql的插件脚本类监控),一般就不算基础监控的范畴了。

 

六、 报警

报警判定,是由judge组件来完成。用户在web portal来配置相关的报警策略,存储在MySQL中。heartbeat server 会定期加载MySQL中的内容。judge也会定期和heartbeat server保持沟通,来获取相关的报警策略。

 

heartbeat sever不仅仅是单纯的加载MySQL中的内容,根据模板继承、模板项覆盖、报警动作覆盖、模板和hostGroup绑定,计算出最终关联到每个endpoint的告警策略,提供给judge组件来使用。

 

transfer转发到judge的每条数据,都会触发相关策略的判定,来决定是否满足报警条件,如果满足条件,则会发送给alarm,alarm再以邮件、短信、米聊等形式通知相关用户,也可以执行用户预先配置好的callback地址。

 

用户可以很灵活的来配置告警判定策略,比如连续n次都满足条件、连续n次的最大值满足条件、不同的时间段不同的阈值、如果处于维护周期内则忽略 等等。

另外也支持突升突降类的判定和告警。

 

七、 API

到这里,数据已经成功的存储在了graph里。如何快速的读出来呢,读过去1小时的,过去1天的,过去一月的,过去一年的,都需要在1秒之内返回。

 

这些都是靠graph和API组件来实现的,transfer会将数据往graph组件转发一份,graph收到数据以后,会以rrdtool的数据归档方式来存储,同时提供查询RPC接口。

 

API面向终端用户,收到查询请求后,会去多个graph里面,查询不同metric的数据,汇总后统一返回给用户。


八、 面板


九、 存储

对于监控系统来讲,历史数据的存储和高效率查询,永远是个很难的问题!

数据量大:目前我们的监控系统,每个周期,大概有2000万次数据上报(上报周期为1分钟和5分钟两种,各占50%),一天24小时里,从来不会有业务低峰,不管是白天和黑夜,每个周期,总会有那么多的数据要更新。

 

写操作多:一般的业务系统,通常都是读多写少,可以方便的使用各种缓存技术,再者各类数据库,对于查询操作的处理效率远远高于写操作。而监控系统恰恰相反,写操作远远高于读。每个周期几千万次的更新操作,对于常用数据库(MySQL、postgresql、mongodb)都是无法完成的。

 

高效率的查:我们说监控系统读操作少,是说相对写入来讲。监控系统本身对于读的要求很高,用户经常会有查询上百个meitric,在过去一天、一周、一月、一年的数据。如何在1秒内返回给用户并绘图,这是一个不小的挑战。

 

open-falcon在这块,投入了较大的精力。我们把数据按照用途分成两类,一类是用来绘图的,一类是用户做数据挖掘的。

 

对于绘图的数据来讲,查询要快是关键,同时不能丢失信息量。对于用户要查询100个metric,在过去一年里的数据时,数据量本身就在那里了,很难1秒之类能返回,另外就算返回了,前端也无法渲染这么多的数据,还得采样,造成很多无谓的消耗和浪费。我们参考rrdtool的理念,在数据每次存入的时候,会自动进行采样、归档。我们的归档策略如下,历史数据保存5年。同时为了不丢失信息量,数据归档的时候,会按照平均值采样、最大值采样、最小值采样存三份。

 

更多参考内容:http://www.roncoo.com/article/index

运维架构服务监控Open-Falcon

标签:技术分享   空间   model   enc   对象   时间   历史   相关   llb   

原文地址:http://www.cnblogs.com/husheng/p/7656599.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!