标签:选中 div return point printf bre minimal names amp
1 #include <stdio.h> 2 #include <set> 3 #include <string.h> 4 #include <algorithm> 5 using namespace std; 6 7 const int maxn = 30; 8 const int inf = 999999999; 9 double minans; 10 int vis[maxn];//记录选中的点 11 int mp[maxn][maxn], ans[maxn][maxn]; 12 int min_road[maxn]; 13 14 int Prim(int n) 15 { 16 int i, j, min_i, minm, sum = 0; 17 int dis[maxn]; 18 int vis[maxn]; 19 for (i = 1; i <= n; i++) 20 dis[i] = ans[i][1]; 21 memset(vis, false, sizeof vis); 22 vis[1] = true; 23 for (i = 1; i<n; i++) 24 { 25 minm = inf, min_i = i; 26 for (j = 1; j <= n; j++) 27 { 28 if (vis[j] == false && dis[j]<minm) 29 { 30 minm = dis[j]; 31 min_i = j; 32 } 33 } 34 if (minm == inf) 35 break; 36 sum += minm; 37 vis[min_i] = true; 38 for (j = 1; j <= n; j++) 39 { 40 if (vis[j] == 0 && dis[j]>ans[min_i][j]) 41 dis[j] = ans[min_i][j]; 42 } 43 } 44 return sum; 45 } 46 47 int ok(int n) 48 { 49 memset(vis, 0, sizeof vis); 50 int cnt = 1; 51 int m = n, cont = 1; 52 while (m) 53 { 54 if (m % 2) 55 vis[cont++] = cnt; 56 cnt++; 57 m /= 2; 58 } 59 return cont; 60 } 61 62 int main() 63 { 64 int d[maxn], maxm; 65 int n, i, j, k, cnt, m; 66 while (scanf("%d%d", &n, &m) != EOF) 67 { 68 if (n == 0 && m == 0) 69 break; 70 maxm = 1; 71 for (i = 1; i <= n; i++) 72 maxm *= 2; 73 for (i = 1; i <= n; i++) 74 scanf("%d", &d[i]); 75 for (i = 1; i <= n; i++) 76 { 77 for (j = 1; j <= n; j++) 78 { 79 scanf("%d", &mp[i][j]); 80 } 81 } 82 minans = 9999999999.0; 83 int sum_point; 84 for (i = 0; i < maxm; i++) 85 { 86 if (ok(i) == m + 1) 87 { 88 sum_point = 0; 89 for (j = 1; j <= m; j++) 90 { 91 sum_point += d[vis[j]];//选的点 92 for (k = j + 1; k <= m; k++) 93 { 94 ans[j][k] = ans[k][j] = mp[vis[j]][vis[k]]; 95 } 96 } 97 int sum = Prim(m); 98 if ((sum*1.0 / sum_point) < minans) 99 { 100 minans = sum*1.0 / sum_point; 101 for (i = 1; i <= m; i++) 102 min_road[i] = vis[i]; 103 } 104 } 105 } 106 for (i = 1; i <= m - 1; i++) 107 printf("%d ", min_road[i]); 108 printf("%d\n", min_road[i]); 109 } 110 return 0; 111 }
hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树
标签:选中 div return point printf bre minimal names amp
原文地址:http://www.cnblogs.com/jaydenouyang/p/7658034.html