标签:原理 ref include bzoj www. long pre lib strong
题
http://www.lydsy.com/JudgeOnline/problem.php?id=3112
解
根据对偶原理转变线性规划形式(截图来自吴一凡的《线性规划与单纯形算法》)

然后单纯形求解
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
//n个变量 m条约束
//c目标 b约束
namespace Linear_Programming{
const double INF=1e17;
const double EPS=1e-7;
const int N=10004,M=1004;
int m,n;
double A[M][N],b[M],c[N],v;
void Pivot(int l,int e)
{
int i,j;
b[l]/=A[l][e];
for(i=1;i<=n;i++)
if(i!=e)
A[l][i]/=A[l][e];
A[l][e]=1/A[l][e];
for(i=1;i<=m;i++)
if(i!=l&&fabs(A[i][e])>EPS)
{
b[i]-=A[i][e]*b[l];
for(j=1;j<=n;j++)
if(j!=e)
A[i][j]-=A[i][e]*A[l][j];
A[i][e]=-A[i][e]*A[l][e];
}
v+=c[e]*b[l];
for(i=1;i<=n;i++)
if(i!=e)
c[i]-=c[e]*A[l][i];
c[e]=-c[e]*A[l][e];
}
double Simplex()
{
int i,l,e;
while(1)
{
for(i=1;i<=n;i++)
if(c[i]>EPS)
break;
if((e=i)==n+1)
return v;
double temp=INF;
for(i=1;i<=m;i++)
if( A[i][e]>EPS && b[i]/A[i][e]<temp )
temp=b[i]/A[i][e],l=i;
if(temp==INF) return INF;
Pivot(l,e);
}
}
}
using namespace Linear_Programming;
int main()
{
int i,j,xa,xb;
double xc;
scanf("%d%d",&m,&n);
memset(A,0,sizeof(A));
for(i=1;i<=m;i++)
scanf("%lf",&b[i]);
for(i=1;i<=n;i++)
{
scanf("%d%d%lf",&xa,&xb,&xc);
c[i]=xc;
for(j=xa;j<=xb;j++)
A[j][i]=1;
}
double ans=Simplex();
printf("%lld\n",(long long)ans);
return 0;
}
标签:原理 ref include bzoj www. long pre lib strong
原文地址:http://www.cnblogs.com/FxxL/p/7667419.html