码迷,mamicode.com
首页 > 其他好文 > 详细

树网的核 Vijos1362 NOIP2007 树结构 直径 暴搜

时间:2017-10-20 11:54:20      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:++   就会   noi   const   www.   gif   空格   src   for   

题面在最下方。

树结构的题做多了就会发现,本题所谓的树网的核(一段偏心距ECC最小的路径)一定是在树的直径上的。

我刚开始做的时候没想到这个,然后写了三个dfs讨论每条直径 Orz

其实只要认识到了这一点,那么这个题maxn=300,轻轻松松打暴力啊!

 

首先跑一次最短路得到整张图内点对<s,t>的距离 (Floyed是可以过的,但是我比较喜欢枚举每个点进行spfa)

两个for枚举一条路径的两个端点(假设是 < i , j >)

如果 dis<i,j> ≤ s,就计算偏心距并更新答案。

算<i,j>的偏心距:再一次枚举所有点,设为s,计算s到路径<i,j>的距离D。由树结构的特殊性可以证明,D=(dis<s,i>+dis<s,j>-dis<i,j>)/ 2

那么偏心距就是所有D里面的最大值。同时ans=min(ans,偏心距)

最后输出ans即可

 

附上AC代码

技术分享
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 template<class T> inline void read(T &_a){
 6     bool f=0;int _ch=getchar();_a=0;
 7     while(_ch<0 || _ch>9){if(_ch==-)f=1;_ch=getchar();}
 8     while(_ch>=0 && _ch<=9){_a=(_a<<1)+(_a<<3)+_ch-0;_ch=getchar();}
 9     if(f)_a=-_a;
10 }
11 
12 const int maxn=301,maxs=1001;
13 struct edge
14 {
15     int to,dis,next;
16 }w[maxn<<1];
17 int n,s,egcnt=1,head[maxn],dis[maxn][maxn],ans=0x7fffffff,h,tail,q[10001];
18 bool ins[maxn];
19 
20 inline void addedge(int from,int to,int dis)
21 {
22     w[++egcnt].dis=dis;
23     w[egcnt].to=to;
24     w[egcnt].next=head[from];
25     head[from]=egcnt;
26     w[++egcnt].dis=dis;
27     w[egcnt].to=from;
28     w[egcnt].next=head[to];
29     head[to]=egcnt;
30 }
31 
32 inline void spfa(int u)
33 {
34     memset(ins,0,sizeof(ins));
35     h=0; tail=1; q[1]=u; dis[u][u]=0;
36     while(h!=tail)
37     {
38         h=h%10000+1;
39         int now=q[h];
40         ins[now]=false;
41         for (register int i=head[now];i;i=w[i].next)
42         {
43             if(dis[u][w[i].to]>dis[u][now]+w[i].dis)
44             {
45                 dis[u][w[i].to]=dis[u][now]+w[i].dis;
46                 if(!ins[w[i].to])
47                 {
48                     ins[w[i].to]=true;
49                     tail=tail%10000+1;
50                     q[tail]=w[i].to;
51                 }
52             }
53         }
54     }
55 }
56 
57 int main()
58 {
59     read(n); read(s);
60     for (register int i=1,a,b,c;i<n;++i) read(a),read(b),read(c),addedge(a,b,c);
61     memset(dis,0x7f,sizeof(dis));
62     for (register int i=1;i<=n;++i) spfa(i);
63     for (register int i=1;i<=n;++i)
64         for (register int v=1,maxdis=0;v<=n;++v)
65             if(dis[i][v]<=s)
66             {
67                 for(register int j=1;j<=n;++j)
68                     maxdis=max(maxdis,dis[i][j]+dis[v][j]-dis[i][v]>>1);
69                 ans=min(ans,maxdis);
70             }
71     printf("%d",ans);
72     return 0;
73 }
View Code

 

描述

设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。

路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a, b)表示以a, b为端点的路径的长度,它是该路径上各边长度之和。我们称d(a, b)为a, b两结点间的距离。

D(v, P)=min{d(v, u), u为路径P上的结点}。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网T,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即

ECC(F)=max{d(v, F),v∈V}

任务:对于给定的树网T=(V, E, W)和非负整数s,求一个路径F,他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过s(可以等于s),使偏心距ECC(F)最小。我们称这个路径为树网T=(V, E, W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,A-B与A-C是两条直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定s=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8。如果指定s=0(或s=1、s=2),则树网的核为结点F,偏心距为12。

技术分享

格式

输入格式

包含n行:

第1行,两个正整数n和s,中间用一个空格隔开。其中n为树网结点的个数,s为树网的核的长度的上界。设结点编号以此为1,2,……,n。

从第2行到第n行,每行给出3个用空格隔开的正整数,依次表示每一条边的两个端点编号和长度。例如,“2 4 7”表示连接结点2与4的边的长度为7。

所给的数据都是正确的,不必检验。

输出格式

只有一个非负整数,为指定意义下的最小偏心距。

样例1

样例输入1

5 2
1 2 5
2 3 2
2 4 4
2 5 3

样例输出1

5

限制

1s

提示

40%的数据满足:5<=n<=15
70%的数据满足:5<=n<=80
100%的数据满足:5<=n<=300, 0<=s<=1000。边长度为不超过1000的正整数。

 

P.S. 本题在bzoj1999有加强版,maxn增大至500000,传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1999

树网的核 Vijos1362 NOIP2007 树结构 直径 暴搜

标签:++   就会   noi   const   www.   gif   空格   src   for   

原文地址:http://www.cnblogs.com/jaywang/p/7698525.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!