标签:接下来 ring ret code 线段树 algorithm efi get 答案
有n个数和5种操作
add a b c:把区间[a,b]内的所有数都增加c
set a b c:把区间[a,b]内的所有数都设为c
sum a b:查询区间[a,b]的区间和
max a b:查询区间[a,b]的最大值
min a b:查询区间[a,b]的最小值
第一行两个整数n,m,第二行n个整数表示这n个数的初始值
接下来m行操作,同题目描述
对于所有的sum、max、min询问,一行输出一个答案
10 6
3 9 2 8 1 7 5 0 4 6
add 4 9 4
set 2 6 2
add 3 8 2
sum 2 10
max 1 7
min 3 6
49
11
4
10%:1<n,m<=10
30%:1<n,m<=10000
100%:1<n,m<=100000
保证中间结果在long long(C/C++)、int64(pascal)范围内
长代码看了好理解
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #include <string> using namespace std; const int N = 1e5 + 10; #define oo 1423333339 #define LL long long #define gg 465432477 struct Node{ LL l, r, w, f, mx, mi, fg; bool qs; }T[N << 2]; LL n, m, answer, maxn, minn; inline LL read() { LL x = 0, f = 1; char c = getchar(); while(c < ‘0‘ || c > ‘9‘){if(c == ‘-‘)f = -1;c = getchar();} while(c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘, c = getchar(); return x * f; } void imp(LL jd) { T[jd].w = T[jd << 1].w + T[jd << 1 | 1].w; T[jd].mx = max(T[jd << 1].mx, T[jd << 1 | 1].mx); T[jd].mi = min(T[jd << 1].mi, T[jd << 1 | 1].mi); } void down(LL jd) { if(T[jd].qs) { T[jd << 1].f = 0; T[jd << 1].qs = 1; T[jd << 1].fg = T[jd].fg; T[jd << 1].w = (T[jd << 1].r - T[jd << 1].l + 1) * T[jd].fg; T[jd << 1 | 1].f = 0; T[jd << 1 | 1].qs = 1; T[jd << 1 | 1].fg = T[jd].fg; T[jd << 1 | 1].w = (T[jd << 1 | 1].r - T[jd << 1 | 1].l + 1) * T[jd].fg; T[jd << 1].mi = T[jd << 1].mx = T[jd << 1 | 1].mi= T[jd << 1 | 1].mx=T[jd].fg; T[jd].fg = 0; T[jd].qs = 0; } if(T[jd].f) { T[jd << 1].f += T[jd].f; T[jd << 1].w += (T[jd << 1].r - T[jd << 1].l + 1) * T[jd].f; T[jd << 1].mi += T[jd].f; T[jd << 1].mx += T[jd].f; T[jd << 1 | 1].f += T[jd].f; T[jd << 1 | 1].w += (T[jd << 1 | 1].r - T[jd << 1 | 1].l + 1) * T[jd].f; T[jd << 1 | 1].mi += T[jd].f; T[jd << 1 | 1].mx += T[jd].f; T[jd].f = 0; } return ; } void build_tree(LL l, LL r, LL jd) { T[jd].l = l; T[jd].r = r; if(l == r) { T[jd].w = read(); T[jd].mx = T[jd].w; T[jd].mi = T[jd].w; return ; } LL mid = (l + r) >> 1; build_tree(l, mid, jd << 1); build_tree(mid + 1, r, jd << 1 | 1); imp(jd); } void Sec_g(LL l, LL r, LL jd, LL x, LL y, LL yj) { if(x <= l && r <= y) { T[jd].f += yj; T[jd].w += (T[jd].r - T[jd].l + 1) * yj; T[jd].mi += yj; T[jd].mx += yj; return ; } if(T[jd].f || T[jd].qs) down(jd); LL mid = (l + r) >> 1; if(x <= mid) Sec_g(l, mid, jd << 1, x, y, yj); if(y > mid) Sec_g(mid + 1, r, jd << 1 | 1, x, y, yj); imp(jd); } void Sec_set(LL l, LL r, LL jd, LL x, LL y, LL k) { if(x <= l && r <= y) { T[jd].fg = k; T[jd].qs = 1; T[jd].w = (T[jd].r - T[jd].l + 1) * T[jd].fg; T[jd].mx = k; T[jd].mi = k; T[jd].f = 0; return ; } LL mid = (l + r ) >> 1; if(T[jd].f || T[jd].qs) down(jd); if(x <= mid) Sec_set(l, mid, jd << 1, x, y, k); if(y > mid) Sec_set(mid + 1, r, jd << 1 | 1, x, y, k); imp(jd); } void Sec_calc(LL l, LL r, LL jd, LL x, LL y) { if(x <= l && r <= y) { answer += T[jd].w; return; } if(T[jd].f || T[jd].qs) down(jd); LL mid = (l + r) >> 1; if(x <= mid) Sec_calc(l, mid, jd << 1, x, y); if(y > mid) Sec_calc(mid + 1, r, jd << 1 | 1, x, y); } void Sec_min(LL l, LL r, LL jd, LL x, LL y) { if(x <= l && r <= y) { minn = min(minn, T[jd].mi); return ; } if(T[jd].f || T[jd].qs) down(jd); LL mid = (l + r) >> 1; if(x <= mid) Sec_min(l, mid, jd << 1, x, y); if(y > mid) Sec_min(mid + 1, r, jd << 1 | 1, x, y); } void Sec_max(LL l, LL r, LL jd, LL x, LL y) { if(x <= l && r <= y) { maxn = max(maxn, T[jd].mx); return ; } if(T[jd].f || T[jd].qs) down(jd); LL mid = (l + r) >> 1; if(x <= mid) Sec_max(l, mid, jd << 1, x, y); if(y > mid) Sec_max(mid + 1, r, jd << 1 | 1, x, y); } int main() { n = read(); m = read(); build_tree(1, n, 1); for(LL i = 1; i <= m; i ++) { string s; cin >> s; LL x = read(); LL y = read(); if(s == "add") { LL k = read(); Sec_g(1, n, 1, x, y, k); continue; } if(s == "set") { LL k = read(); Sec_set(1, n, 1, x, y, k); continue; } if(s == "sum") { answer = 0; Sec_calc(1, n, 1, x, y); printf("%lld\n", answer); continue; } if(s == "min") { minn = oo; Sec_min(1, n, 1, x, y); printf("%lld\n", minn); continue; } if(s == "max") { maxn = -oo; Sec_max(1, n, 1, x, y); printf("%lld\n", maxn); continue; } } return 0; } /* 10 6 3 9 2 8 1 7 5 0 4 6 add 4 9 4 set 2 6 2 add 3 8 2 sum 2 10 max 1 7 min 3 6 49 11 4 */
标签:接下来 ring ret code 线段树 algorithm efi get 答案
原文地址:http://www.cnblogs.com/lyqlyq/p/7701212.html