标签:repr 提升 ant cvpr oss rsa ted 传统 neu
DRCN http://www.drcn.org/ The International Workshop on Design of Reliable Communication Networks (DRCN)
2016年10月转: image super-resolution分类_DavFrank_新浪博客 http://blog.sina.com.cn/s/blog_82a927880102wbpx.html
查DRCN时逛到的一个帖子,对最近的超分辨率问题整理得很全。
转了一部分,但是从这里最后的?Quantitative comparisons可以看出,如果单从传统学习的角度,对于PSNR的提升,可能已经很难超越DL。当然有一些基于重建的方法可能会接近,但是时间消耗太大,只能学术玩玩。
其实不只是超分辨率问题,涉及到CV的各个方面,很多最近几年都被DL打压的很厉害,是不是会出现DL一统江湖的情况?我想很难,最后的一个结果会是什么样让人期待。
?
github:https://github.com/huangzehao/Super-Resolution.Benckmark
1---Classical Sparse Coding Method
① ScSR [Web]
- Image super-resolution as sparse representation of raw image patches (CVPR2008), Jianchao Yang et al.
- Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.
- Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.
2---Anchored Neighborhood Regression Method
- Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.
- A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.
- Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.
Self-Exemplars
① Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.
4---Bayes
- Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.
5---Deep Learning Method
- Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.
- Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.
- ② CSCN [Web]
- Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.
- Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.
- ③ VDSR [Web]
- Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.
- Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.
- Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.
- Is the deconvolution layer the same as a convolutional layer? [PDF]
- ⑥ FSRCNN [Web]
- Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.
6---Perceptual Loss
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Christian Ledig et al.
SR领域文献
标签:repr 提升 ant cvpr oss rsa ted 传统 neu
原文地址:http://www.cnblogs.com/wxl845235800/p/7705298.html