码迷,mamicode.com
首页 > 其他好文 > 详细

SR领域文献

时间:2017-10-21 19:12:20      阅读:273      评论:0      收藏:0      [点我收藏+]

标签:repr   提升   ant   cvpr   oss   rsa   ted   传统   neu   

DRCN http://www.drcn.org/   The International Workshop on Design of Reliable Communication Networks (DRCN) 

2016年10月转: image super-resolution分类_DavFrank_新浪博客 http://blog.sina.com.cn/s/blog_82a927880102wbpx.html

 

 查DRCN时逛到的一个帖子,对最近的超分辨率问题整理得很全。

      转了一部分,但是从这里最后的?Quantitative comparisons可以看出,如果单从传统学习的角度,对于PSNR的提升,可能已经很难超越DL。当然有一些基于重建的方法可能会接近,但是时间消耗太大,只能学术玩玩。

      其实不只是超分辨率问题,涉及到CV的各个方面,很多最近几年都被DL打压的很厉害,是不是会出现DL一统江湖的情况?我想很难,最后的一个结果会是什么样让人期待。

?

github:https://github.com/huangzehao/Super-Resolution.Benckmark

1---Classical Sparse Coding Method

① ScSR [Web]
  • Image super-resolution as sparse representation of raw image patches (CVPR2008), Jianchao Yang et al.
  • Image super-resolution via sparse representation (TIP2010), Jianchao Yang et al.
  • Coupled dictionary training for image super-resolution (TIP2011), Jianchao Yang et al.

 

2---Anchored Neighborhood Regression Method

  • ① ANR [Web]
  • Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ICCV2013), Radu Timofte et al.
  • ② A+ [Web]
  • A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution (ACCV2014), Radu Timofte et al.
  • ③ IA [Web]
  • Seven ways to improve example-based single image super resolution (CVPR2016), Radu Timofte et al.

Self-Exemplars

  • 3---SelfExSR [Web]
① Single Image Super-Resolution from Transformed Self-Exemplars (CVPR2015), Jia-Bin Huang et al.

 

4---Bayes

  • ① NBSRF [Web]
  • Naive Bayes Super-Resolution Forest (ICCV2015), Jordi Salvador et al.

 

5---Deep Learning Method

  • ①SRCNN [Web]
  • Image Super-Resolution Using Deep Convolutional Networks (ECCV2014), Chao Dong et al.
  • Image Super-Resolution Using Deep Convolutional Networks (TPAMI2015), Chao Dong et al.
  • ② CSCN [Web]
  • Deep Networks for Image Super-Resolution with Sparse Prior (ICCV2015), Zhaowen Wang et al.
  • Robust Single Image Super-Resolution via Deep Networks with Sparse Prior (TIP2016), Ding Liu et al.
  • ③ VDSR [Web]
  • Accurate Image Super-Resolution Using Very Deep Convolutional Networks (CVPR2016), Jiwon Kim et al.
  • ④ DRCN [Web]
  • Deeply-Recursive Convolutional Network for Image Super-Resolution (CVPR2016), Jiwon Kim et al.
  • ⑤ ESPCN [PDF]
  • Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network (CVPR2016), Wenzhe Shi et al.
  • Is the deconvolution layer the same as a convolutional layer? [PDF]
  • ⑥ FSRCNN [Web]
  • Acclerating the Super-Resolution Convolutional Neural Network (ECCV2016), Dong Chao et al.

 

6---Perceptual Loss

  • Perceptual Losses for Real-Time Style Transfer and Super-Resolution (ECCV2016), Justin Johnson et al.
  • SRGAN [PDF]
  • Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Christian Ledig et al.

 

SR领域文献

标签:repr   提升   ant   cvpr   oss   rsa   ted   传统   neu   

原文地址:http://www.cnblogs.com/wxl845235800/p/7705298.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!