标签:font zsh 规划 mds its big ant wav 代码
呐,为什么叫它01背包呢,因为装进去就是1,不装进去就是0.所以针对每个物品就两种状态,装,不装(请允许我用这么老套的开篇,相信听过很多次背包讲解的人,大多都是这个开篇的)所以咯,我这个背包啊,只要有足够大的空间,这个物品是有可能被装进去的咯。
所以有状态转移方程dp[i][j] = max( dp[i-1][j] , dp[i-1][ j - weight[i] ] + value[i] )
然后二维数组的代码写法分分钟就出来了,反正都是跟前一个状态去转移,也没有什么写法上的限制。
并不优化
#include<bits/stdc++.h>
using namespace std;
int dp[1005][1005];
int weight[1005];
int value[1005];
int main()
{
int n,m;
cin>>m>>n;
memset(dp,0,sizeof(dp));//数组清空,其实同时就把边界给做了清理
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i];
//从1开始有讲究的因为涉及到dp[i-1][j],从0开始会越界
for(int i=1; i<=n; i++)//判断每个物品能否放进
{
for(int j=0; j<=m; j++)//对每个状态进行判断
//这边两重for都可以倒着写,只是需要处理最边界的情况,滚动数组不一样
{
if(j>=weight[i])//能放进
dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
else dp[i][j]=dp[i-1][j];//不能放进
}
}
cout<<dp[n][m]<<endl;
return 0;
}
因为很容易超内存
用滚动数组优化
#include<bits/stdc++.h>
using namespace std;
int dp[1005];//滚动数组的写法,省下空间
int weight[1005];
int value[1005];
int main()
{
int n,m;
cin>>m>>n;
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)
cin>>weight[i]>>value[i];
for(int i=1; i<=n; i++){ //对每个数判断,可反
for(int j=m; j>=weight[i]; j--) {//这里这个循环定死,不能反,反了就是完全背包
dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);//其实不断在判断最优解,一层一层的
}
}
cout<<dp[m]<<endl;
return 0;
}
就像先前讲的,完全背包是每个物品都无限,那么我只要对着一个性价比最高的物品狂选就是了啊。??
是吗?有瑕疵啊!
反例一批一批的啊,认死了选性价比最高的,不一定是完全填满背包的啊,万一最后一个是刚好填满背包的,而且价格凑起来刚好比全选性价比最高的物品高的情况比比皆是啊。
啊?什么,特判最后一个状态?
你在搞笑吗|||- -,那我再往前推到倒数第二件,第三件咋办。总不能对每个物品都特判吧。
所以正解就是动态规划。状态转移方程如下:dp[i][j] = max ( dp[i-1][j - k*weight[i]] +k*value[i] ) ( 0<=k*weight[i]<=m)
#include<bits/stdc++.h>
using namespace std;
int dp[100005];//m
struct Node{
int a,b;
}node[1005];//n
int main(){
int n;
while(~scanf("%d",&n)){
for(int i=0;i<n;i++){
scanf("%d%d",&node[i].a,&node[i].b);
}
int m;
scanf("%d",&m);
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++){
for(int j=node[i].b;j<=m;j++){//这样就是完全背包
dp[j]=max(dp[j],dp[j-node[i].b]+node[i].a);
}
}
printf("%d\n",dp[m]);
}
return 0;
}
理解了前面两种背包,那么第三种背包理解起来就毫不费力了
首先这种可以把物品拆开,把相同的num[i]件物品 看成 价值跟重量相同的num[i]件不同的物品,那么!!是不是就转化成了一个规模稍微大一点的01背包了。
那只是一种理解方法,其实正规的应该是这样的dp[i][j] = max ( dp[i-1][j - k*weight[i]] +k*value[i] ) 0<=k<=num[i](
这个跟完全背包差点就一毛一样了)
那么还是用滚动数组来写,而且还又优化了下
#include<bits/stdc++.h>
using namespace std;
const int N = 1005;
int dp[N];
int c[N],w[N],num[N];
int n,m;
void ZeroOne_Pack(int cost,int weight,int n)//吧01背包封装成函数
{
for(int i=n; i>=cost; i--)
dp[i] = max(dp[i],dp[i-cost] + weight);
}
void Complete_Pack(int cost,int weight,int n)//把完全背包封装成函数
{
for(int i=cost; i<=n; i++)
dp[i] = max(dp[i],dp[i-cost] + weight);
}
int Multi_Pack(int c[],int w[],int num[],int n,int m)//多重背包
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++)//遍历每种物品
{
if(num[i]*c[i] > m)
Complete_Pack(c[i],w[i],m);
//如果全装进去已经超了重量,相当于这个物品就是无限的
//因为是取不光的。那么就用完全背包去套
else
{
int k = 1;
//取得光的话,去遍历每种取法
//这里用到是二进制思想,降低了复杂度
//为什么呢,因为他取的1,2,4,8...与余数个该物品,打包成一个大型的该物品
//这样足够凑出了从0-k个该物品取法
//把复杂度从k变成了logk
//如k=11,则有1,2,4,4,足够凑出0-11个该物品的取法
while(k < num[i])
{
ZeroOne_Pack(k*c[i],k*w[i],m);
num[i] -= k;
k <<= 1;
}
ZeroOne_Pack(num[i]*c[i],num[i]*w[i],m);
}
}
return dp[m];
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>m>>n;
for(int i=1; i<=n; i++)
cin>>c[i]>>w[i]>>num[i];
cout<<Multi_Pack(c,w,num,n,m)<<endl;
}
return 0;
}
标签:font zsh 规划 mds its big ant wav 代码
原文地址:http://www.cnblogs.com/bbqub/p/7710324.html