码迷,mamicode.com
首页 > 其他好文 > 详细

矩阵乘法 strassen

时间:2017-10-24 20:54:42      阅读:188      评论:0      收藏:0      [点我收藏+]

标签:rtt   arch   ash   递归   typename   http   效果   实现   下界   

   1、矩阵相乘的朴素算法 T(n) = Θ(n3)                                                    

         朴素矩阵相乘算法,思想明了,编程实现简单。时间复杂度是Θ(n^3)。伪码如下

1 for i ← 1 to n
2     do for j ← 1 to n
3         do c[i][j] ← 0
4             for k ← 1 to n
5                 do c[i][j] ← c[i][j] + a[i][k]? b[k][j]

     2、矩阵相乘的strassen算法 T(n)=Θ(nlog7) =Θ (n2.81)                       

       矩阵乘法中采用分治法,第一感觉上应该能够有效的提高算法的效率。如下图所示分治法方案,以及对该算法的效率分析。有图可知,算法效率是Θ(n^3)。算法效率并没有提高。下面介绍下矩阵分治法思想:

技术分享

              鉴于上面的分治法方案无法有效提高算法的效率,要想提高算法效率,由主定理方法可知必须想办法将2中递归式中的系数8减少。Strassen提出了一种将系数减少到7的分治法方案,如下图所示。技术分享

                             效率分析如下:

技术分享

                  伪码如下:

Strassen (N,MatrixA,MatrixB,MatrixResult)
          
    //splitting input Matrixes, into 4 submatrices each.
            for i  <-  0  to  N/2
                for j  <-  0  to  N/2
                    A11[i][j]  <-  MatrixA[i][j];                   //a矩阵块
                    A12[i][j]  <-  MatrixA[i][j + N / 2];           //b矩阵块
                    A21[i][j]  <-  MatrixA[i + N / 2][j];           //c矩阵块
                    A22[i][j]  <-  MatrixA[i + N / 2][j + N / 2];//d矩阵块
                                
                    B11[i][j]  <-  MatrixB[i][j];                    //e 矩阵块
                    B12[i][j]  <-  MatrixB[i][j + N / 2];            //f 矩阵块
                    B21[i][j]  <-  MatrixB[i + N / 2][j];            //g 矩阵块
                    B22[i][j]  <-  MatrixB[i + N / 2][j + N / 2];    //h矩阵块
            //here we calculate M1..M7 matrices .                                                                                                                       
            //递归求M1
            HalfSize  <-  N/2    
            AResult  <-  A11+A22
            BResult  <-  B11+B22                                                                     
            Strassen( HalfSize, AResult, BResult, M1 );   //M1=(A11+A22)*(B11+B22)          p5=(a+d)*(e+h)    
            //递归求M2
            AResult  <-  A21+A22    
            Strassen(HalfSize, AResult, B11, M2);          //M2=(A21+A22)B11                 p3=(c+d)*e
            //递归求M3
            BResult  <-  B12 - B22   
            Strassen(HalfSize, A11, BResult, M3);         //M3=A11(B12-B22)                  p1=a*(f-h)
            //递归求M4
            BResult  <-  B21 - B11  
            Strassen(HalfSize, A22, BResult, M4);         //M4=A22(B21-B11)                  p4=d*(g-e)
            //递归求M5
            AResult  <-  A11+A12    
            Strassen(HalfSize, AResult, B22, M5);         //M5=(A11+A12)B22                  p2=(a+b)*h
            //递归求M6
            AResult  <-  A21-A11
            BResult  <-  B11+B12      
            Strassen( HalfSize, AResult, BResult, M6);     //M6=(A21-A11)(B11+B12)          p7=(c-a)(e+f)
            //递归求M7
            AResult  <-  A12-A22
            BResult  <-  B21+B22      
            Strassen(HalfSize, AResult, BResult, M7);      //M7=(A12-A22)(B21+B22)          p6=(b-d)*(g+h)

            //计算结果子矩阵
            C11  <-  M1 + M4 - M5 + M7;

            C12  <-  M3 + M5;

            C21  <-  M2 + M4;

            C22  <-  M1 + M3 - M2 + M6;
            //at this point , we have calculated the c11..c22 matrices, and now we are going to
            //put them together and make a unit matrix which would describe our resulting Matrix.
            for i  <-  0  to  N/2
                for j  <-  0  to  N/2
                    MatrixResult[i][j]                  <-  C11[i][j];
                    MatrixResult[i][j + N / 2]          <-  C12[i][j];
                    MatrixResult[i + N / 2][j]          <-  C21[i][j];
                    MatrixResult[i + N / 2][j + N / 2]  <-  C22[i][j];

 

     3、完成测试代码                                                                                     

    Strassen.h 

#ifndef STRASSEN_HH
#define STRASSEN_HH
template<typename T>
class Strassen_class{
public:
      void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize );
      void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize );
      void MUL( T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize );//朴素算法实现
      void FillMatrix( T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值
      void PrintMatrix(T **MatrixA,int MatrixSize);//打印矩阵
      void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现
};
template<typename T>
void Strassen_class<T>::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize )
{
    for ( int i = 0; i < MatrixSize; i++)
    {
        for ( int j = 0; j < MatrixSize; j++)
        {
            MatrixResult[i][j] =  MatrixA[i][j] + MatrixB[i][j];
        }
    }
}
template<typename T>
void Strassen_class<T>::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize )
{
    for ( int i = 0; i < MatrixSize; i++)
    {
        for ( int j = 0; j < MatrixSize; j++)
        {
            MatrixResult[i][j] =  MatrixA[i][j] - MatrixB[i][j];
        }
    }
}
template<typename T>
void Strassen_class<T>::MUL( T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize )
{
    for (int i=0;i<MatrixSize ;i++)
    {
        for (int j=0;j<MatrixSize ;j++)
        {
            MatrixResult[i][j]=0;
            for (int k=0;k<MatrixSize ;k++)
            {
                MatrixResult[i][j]=MatrixResult[i][j]+MatrixA[i][k]*MatrixB[k][j];
            }
        }
    }
}

/*
c++使用二维数组,申请动态内存方法
申请
int **A;
A = new int *[desired_array_row];
for ( int i = 0; i < desired_array_row; i++)
     A[i] = new int [desired_column_size];

释放
for ( int i = 0; i < your_array_row; i++)
    delete [] A[i];
delete[] A;

*/
template<typename T>
void Strassen_class<T>::Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC)
{

    int HalfSize = N/2;
    int newSize = N/2;

    if ( N <= 64 )    //分治门槛,小于这个值时不再进行递归计算,而是采用常规矩阵计算方法
    {
        MUL(MatrixA,MatrixB,MatrixC,N);
    }
    else
    {
        T** A11;
        T** A12;
        T** A21;
        T** A22;
        
        T** B11;
        T** B12;
        T** B21;
        T** B22;
        
        T** C11;
        T** C12;
        T** C21;
        T** C22;
        
        T** M1;
        T** M2;
        T** M3;
        T** M4;
        T** M5;
        T** M6;
        T** M7;
        T** AResult;
        T** BResult;

        //making a 1 diminsional pointer based array.
        A11 = new T *[newSize];
        A12 = new T *[newSize];
        A21 = new T *[newSize];
        A22 = new T *[newSize];
        
        B11 = new T *[newSize];
        B12 = new T *[newSize];
        B21 = new T *[newSize];
        B22 = new T *[newSize];
        
        C11 = new T *[newSize];
        C12 = new T *[newSize];
        C21 = new T *[newSize];
        C22 = new T *[newSize];
        
        M1 = new T *[newSize];
        M2 = new T *[newSize];
        M3 = new T *[newSize];
        M4 = new T *[newSize];
        M5 = new T *[newSize];
        M6 = new T *[newSize];
        M7 = new T *[newSize];

        AResult = new T *[newSize];
        BResult = new T *[newSize];

        int newLength = newSize;

        //making that 1 diminsional pointer based array , a 2D pointer based array
        for ( int i = 0; i < newSize; i++)
        {
            A11[i] = new T[newLength];
            A12[i] = new T[newLength];
            A21[i] = new T[newLength];
            A22[i] = new T[newLength];
            
            B11[i] = new T[newLength];
            B12[i] = new T[newLength];
            B21[i] = new T[newLength];
            B22[i] = new T[newLength];
            
            C11[i] = new T[newLength];
            C12[i] = new T[newLength];
            C21[i] = new T[newLength];
            C22[i] = new T[newLength];

            M1[i] = new T[newLength];
            M2[i] = new T[newLength];
            M3[i] = new T[newLength];
            M4[i] = new T[newLength];
            M5[i] = new T[newLength];
            M6[i] = new T[newLength];
            M7[i] = new T[newLength];

            AResult[i] = new T[newLength];
            BResult[i] = new T[newLength];


        }
        //splitting input Matrixes, into 4 submatrices each.
        for (int i = 0; i < N / 2; i++)
        {
            for (int j = 0; j < N / 2; j++)
            {
                A11[i][j] = MatrixA[i][j];
                A12[i][j] = MatrixA[i][j + N / 2];
                A21[i][j] = MatrixA[i + N / 2][j];
                A22[i][j] = MatrixA[i + N / 2][j + N / 2];

                B11[i][j] = MatrixB[i][j];
                B12[i][j] = MatrixB[i][j + N / 2];
                B21[i][j] = MatrixB[i + N / 2][j];
                B22[i][j] = MatrixB[i + N / 2][j + N / 2];

            }
        }

        //here we calculate M1..M7 matrices .
        //M1[][]
        ADD( A11,A22,AResult, HalfSize);
        ADD( B11,B22,BResult, HalfSize);                //p5=(a+d)*(e+h)
        Strassen( HalfSize, AResult, BResult, M1 ); //now that we need to multiply this , we use the strassen itself .


        //M2[][]
        ADD( A21,A22,AResult, HalfSize);              //M2=(A21+A22)B11   p3=(c+d)*e
        Strassen(HalfSize, AResult, B11, M2);       //Mul(AResult,B11,M2);

        //M3[][]
        SUB( B12,B22,BResult, HalfSize);              //M3=A11(B12-B22)   p1=a*(f-h)
        Strassen(HalfSize, A11, BResult, M3);       //Mul(A11,BResult,M3);

        //M4[][]
        SUB( B21, B11, BResult, HalfSize);           //M4=A22(B21-B11)    p4=d*(g-e)
        Strassen(HalfSize, A22, BResult, M4);       //Mul(A22,BResult,M4);

        //M5[][]
        ADD( A11, A12, AResult, HalfSize);           //M5=(A11+A12)B22   p2=(a+b)*h
        Strassen(HalfSize, AResult, B22, M5);       //Mul(AResult,B22,M5);


        //M6[][]
        SUB( A21, A11, AResult, HalfSize);
        ADD( B11, B12, BResult, HalfSize);             //M6=(A21-A11)(B11+B12)   p7=(c-a)(e+f)
        Strassen( HalfSize, AResult, BResult, M6);    //Mul(AResult,BResult,M6);

        //M7[][]
        SUB(A12, A22, AResult, HalfSize);
        ADD(B21, B22, BResult, HalfSize);             //M7=(A12-A22)(B21+B22)    p6=(b-d)*(g+h)
        Strassen(HalfSize, AResult, BResult, M7);     //Mul(AResult,BResult,M7);

        //C11 = M1 + M4 - M5 + M7;
        ADD( M1, M4, AResult, HalfSize);
        SUB( M7, M5, BResult, HalfSize);
        ADD( AResult, BResult, C11, HalfSize);

        //C12 = M3 + M5;
        ADD( M3, M5, C12, HalfSize);

        //C21 = M2 + M4;
        ADD( M2, M4, C21, HalfSize);

        //C22 = M1 + M3 - M2 + M6;
        ADD( M1, M3, AResult, HalfSize);
        SUB( M6, M2, BResult, HalfSize);
        ADD( AResult, BResult, C22, HalfSize);

        //at this point , we have calculated the c11..c22 matrices, and now we are going to
        //put them together and make a unit matrix which would describe our resulting Matrix.
        //组合小矩阵到一个大矩阵
        for (int i = 0; i < N/2 ; i++)
        {
            for (int j = 0 ; j < N/2 ; j++)
            {
                MatrixC[i][j] = C11[i][j];
                MatrixC[i][j + N / 2] = C12[i][j];
                MatrixC[i + N / 2][j] = C21[i][j];
                MatrixC[i + N / 2][j + N / 2] = C22[i][j];
            }
        }

        // 释放矩阵内存空间
        for (int i = 0; i < newLength; i++)
        {
            delete[] A11[i];delete[] A12[i];delete[] A21[i];
            delete[] A22[i];

            delete[] B11[i];delete[] B12[i];delete[] B21[i];
            delete[] B22[i];
            delete[] C11[i];delete[] C12[i];delete[] C21[i];
            delete[] C22[i];
            delete[] M1[i];delete[] M2[i];delete[] M3[i];delete[] M4[i];
            delete[] M5[i];delete[] M6[i];delete[] M7[i];
            delete[] AResult[i];delete[] BResult[i] ;
        }
        delete[] A11;delete[] A12;delete[] A21;delete[] A22;
        delete[] B11;delete[] B12;delete[] B21;delete[] B22;
        delete[] C11;delete[] C12;delete[] C21;delete[] C22;
        delete[] M1;delete[] M2;delete[] M3;delete[] M4;delete[] M5;
        delete[] M6;delete[] M7;
        delete[] AResult;
        delete[] BResult ;

    }//end of else

}

template<typename T>
void Strassen_class<T>::FillMatrix( T** MatrixA, T** MatrixB, int length)
{
    for(int row = 0; row<length; row++)
    {
        for(int column = 0; column<length; column++)
        {

            MatrixB[row][column] = (MatrixA[row][column] = rand() %5);
            //matrix2[row][column] = rand() % 2;//ba hazfe in khat 50% afzayeshe soorat khahim dasht
        }

    }
}
template<typename T>
void Strassen_class<T>::PrintMatrix(T **MatrixA,int MatrixSize)
{
    cout<<endl;
    for(int row = 0; row<MatrixSize; row++)
    {
        for(int column = 0; column<MatrixSize; column++)
        {


            cout<<MatrixA[row][column]<<"\t";
            if ((column+1)%((MatrixSize)) == 0)
                cout<<endl;
        }

    }
    cout<<endl;
}
#endif

Strassen.h

 

 

 

   Strassen.cpp 

#include <iostream>
#include <ctime>
#include <Windows.h>
using namespace std;
#include "Strassen.h"

int main()
{
    Strassen_class<int> stra;//定义Strassen_class类对象
    int MatrixSize = 0;

    int** MatrixA;    //存放矩阵A
    int** MatrixB;    //存放矩阵B
    int** MatrixC;    //存放结果矩阵

    clock_t startTime_For_Normal_Multipilication ;
    clock_t endTime_For_Normal_Multipilication ;

    clock_t startTime_For_Strassen ;
    clock_t endTime_For_Strassen ;
    srand(time(0));

    cout<<"\n请输入矩阵大小(必须是2的幂指数值(例如:32,64,512,..): ";
    cin>>MatrixSize;

    int N = MatrixSize;//for readiblity.

    //申请内存
    MatrixA = new int *[MatrixSize];
    MatrixB = new int *[MatrixSize];
    MatrixC = new int *[MatrixSize];

    for (int i = 0; i < MatrixSize; i++)
    {
        MatrixA[i] = new int [MatrixSize];
        MatrixB[i] = new int [MatrixSize];
        MatrixC[i] = new int [MatrixSize];
    }

    stra.FillMatrix(MatrixA,MatrixB,MatrixSize);  //矩阵赋值

  //*******************conventional multiplication test
        cout<<"朴素矩阵算法开始时钟:  "<< (startTime_For_Normal_Multipilication = clock());

        stra.MUL(MatrixA,MatrixB,MatrixC,MatrixSize);//朴素矩阵相乘算法 T(n) = O(n^3)

        cout<<"\n朴素矩阵算法结束时钟: "<< (endTime_For_Normal_Multipilication = clock());

        cout<<"\n矩阵运算结果... \n";
        stra.PrintMatrix(MatrixC,MatrixSize);

  //*******************Strassen multiplication test
        cout<<"\nStrassen算法开始时钟: "<< (startTime_For_Strassen = clock());

        stra.Strassen( N, MatrixA, MatrixB, MatrixC ); //strassen矩阵相乘算法

        cout<<"\nStrassen算法结束时钟: "<<(endTime_For_Strassen = clock());


    cout<<"\n矩阵运算结果... \n";
    stra.PrintMatrix(MatrixC,MatrixSize);

    cout<<"矩阵大小 "<<MatrixSize;
    cout<<"\n朴素矩阵算法: "<<(endTime_For_Normal_Multipilication - startTime_For_Normal_Multipilication)<<" Clocks.."<<(endTime_For_Normal_Multipilication - startTime_For_Normal_Multipilication)/CLOCKS_PER_SEC<<" Sec";
    cout<<"\nStrassen算法:"<<(endTime_For_Strassen - startTime_For_Strassen)<<" Clocks.."<<(endTime_For_Strassen - startTime_For_Strassen)/CLOCKS_PER_SEC<<" Sec\n";
    system("Pause");
    return 0;

}

 

 

            输出:

技术分享     

       4、性能分析                                                                                                                 

        

矩阵大小 朴素矩阵算法(秒) Strassen算法(秒)
32 0.003 0.003
64 0.004 0.004
128 0.021 0.071
256 0.09 0.854
512 0.782 6.408
1024 8.908 52.391

  可以发现:可以看到使用Strassen算法时,耗时不但没有减少,反而剧烈增多,在n=512时计算时间就无法忍受,效果没有朴素矩阵算法好。网上查阅资料,现罗列如下:

  1)采用Strassen算法作递归运算,需要创建大量的动态二维数组,其中分配堆内存空间将占用大量计算时间,从而掩盖了Strassen算法的优势

  2)于是对Strassen算法做出改进,设定一个界限。当n<界限时,使用普通法计算矩阵,而不继续分治递归。需要合理设置界限,不同环境(硬件配置)下界限不同

  3)矩阵乘法一般意义上还是选择的是朴素的方法,只有当矩阵变稠密,而且矩阵的阶数很大时,才会考虑使用Strassen算法。

分析原因:(网上总结的说法)

http://blog.csdn.net/handawnc/article/details/7987107

仔细研究后发现,采用Strassen算法作递归运算,需要创建大量的动态二维数组,其中分配堆内存空间将占用大量计算时间,从而掩盖了Strassen算法的优势。于是对Strassen算法做出改进,设定一个界限。当n<界限时,使用普通法计算矩阵,而不继续分治递归。

改进后算法优势明显,就算时间大幅下降。之后,针对不同大小的界限进行试验。在初步试验中发现,当数据规模小于1000时,下界S法的差别不大,规模大于1000以后,n取值越大,消耗时间下降。最优的界限值在32~128之间。

因为计算机每次运算时的系统环境不同(CPU占用、内存占用等),所以计算出的时间会有一定浮动。虽然这样,试验结果已经能得出结论Strassen算法比常规法优势明显。使用下界法改进后,在分治效率和动态分配内存间取舍,针对不同的数据规模稍加试验可以得到一个最优的界限。

 

http://www.cppblog.com/sosi/archive/2010/08/30/125259.html

时间复杂度就马上降下来了。。但是不要过于乐观。

从实用的观点看,Strassen算法通常不是矩阵乘法所选择的方法:

1 在Strassen算法的运行时间中,隐含的常数因子比简单的O(n^3)方法常数因子大

2 当矩阵是稀疏的时候,为稀疏矩阵设计的算法更快

3 Strassen算法不像简单方法那样子具有数值稳定性

4 在递归层次中生成的子矩阵要消耗空间。

所以矩阵乘法一般意义上还是选择的是朴素的方法,只有当矩阵变稠密,而且矩阵的阶数>20左右,才会考虑使用Strassen算法。

 

来源:http://www.cnblogs.com/zhoutaotao/p/3963048.html

矩阵乘法 strassen

标签:rtt   arch   ash   递归   typename   http   效果   实现   下界   

原文地址:http://www.cnblogs.com/dongyafei/p/7725422.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!