标签:优化 分解 自己 color max 开始 记忆化搜索 预处理 mit
【资料】
★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao
【记忆化搜索】
数位:数字从低位到高位依次为0~len-1。
高位限制limit=limit&&i==a[pos]
前导零lead=lead&&i==0
数位pos=pos-1(第0位是个位,第-1位直接返回)
前缀状态state(表示(pos,len]的状态)
f[pos][state]表示前缀状态为state,数位[0,pos]不受限的答案。
最后,询问差分。
typedef long long ll; int a[20]; ll dp[20][state];//不同题目状态不同 ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零 { //递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了 if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */ //第二个就是记忆化(在此前可能不同题目还能有一些剪枝) if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state]; /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/ int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了 ll ans=0; //开始计数 for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了 { if() ... else if()... ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的 /*这里还算比较灵活,不过做几个题就觉得这里也是套路了 大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论 去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目 要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类, 前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/ } //计算完,记录状态 if(!limit && !lead) dp[pos][state]=ans; /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/ return ans; } ll solve(ll x) { int pos=0; while(x)//把数位都分解出来 { a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行 x/=10; } return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛 } int main() { ll le,ri; while(~scanf("%lld%lld",&le,&ri)) { //初始化dp数组为-1,这里还有更加优美的优化,后面讲 printf("%lld\n",solve(ri)-solve(le-1)); } } 谢谢dalao的模板QAQ
这个强大的模板引用自数位dp总结 之 从入门到模板 by wust_wenhao,万分感谢> <!
【技巧】
1.DP初始化只在多组数据外,过程中f数组可以重复使用。
2.减法的艺术:将记忆化【前缀和为sum时满足条件的个数】改为记忆化【前缀和为sum,对后面还有all-sum需求时满足条件的个数】,有可能优化空间。
3.计数转求和:求解满足条件的数字的和,对于每一位i算对答案的贡献,即sum+=i*10^pos*cnt,其中cnt为数字个数,然后同时记忆化数字个数num和总和sum即可。
如果是平方和,关键就在对于pos位的数字i,f=i*10^pos,x表示pos位后面的整个数字,将当前平方和分离为(f+x)^2,则有f^2+2*f*x+x^2,最大的问题在于x要和f相乘。
但是,f相同!
所以对于x求sigma后,对于同一个f,公式就可以全部合并变成cnt*f^2+2*f*sigma(x)+sigma(x^2),显然就要维护cnt,sum,sqsum,其中sqsum也正是当前正在求的平方和,sum是普通的和,cnt是数字个数。
三个东西可以并成结构体传递,也可以用传地址。
4.另一种问题:求满足条件的第n个数字,预处理f[i]表示长度为i的数字(不含前导0)的个数。
这样就可以确定第n个数字的长度。
然后从最高位开始按位确定。
5.论文笔记:
(一) 注意f[i]表达的观点是高度,基于同一高度答案相同的现象。 f[i][j]表示高度i,恰好含有j个1的数的个数,不考虑该高度自身的0和1。 叶子节点所在高度为0,依次往上叠加。 calc过程:从上到下枚举高度<1><2>(max~1,不能到0,考虑到倒数第二层为止) <1>若x在本高度为1,tot++。 <2>若x在下个高度为1,则ans加下个高度的0的答案。(实际已经将0~max所有层都考虑完毕) <3>考虑x本身可否ans++ k进制:将n化为k进制存进数组,左起第一个非01数字改为1,后面全部改为1,得到数字看成二进制就是不大于n的最大可以用01表示的数字了。 从数位角度考虑,最低位为0位,f[i][j]表示0~i-1位数字任意变换恰好含有j个1的数的个数。 calc(n,k)求0~n中恰好k个1的数字个数,通过将n中的每个1变为0,就可以每次加上0~i-1位数字任意变换恰好含有k-tot个1的数的个数(f[i-1][k-tot])。 真正计算结果时,f[i][j]是很少拿上来的,f[i][j]一般只用于calc中。 (二)【SPOJ】1182 Sorted bit sequence 注意:位数只能从31位开始到1位! (三)【SPOJ】2319 BIGSEQ - Sequence
【递推】【BZOJ】1833 [ZJOI2010]count 数字计数
标签:优化 分解 自己 color max 开始 记忆化搜索 预处理 mit
原文地址:http://www.cnblogs.com/onioncyc/p/7738814.html