标签:必须 www oid ... not 编写 代码实现 最优 except
1. 神经网络原理
神经网络模型,是上一章节提到的典型的监督学习问题,即我们有一组输入以及对应的目标输出,求最优模型。通过最优模型,当我们有新的输入时,可以得到一个近似真实的预测输出。
我们先看一下如何实现这样一个简单的神经网络:
输入 x = [1,2,3],
目标输出 y = [-0.85, 0.72]
中间使用一个包含四个单元的隐藏层。
结构如图:
求所需参数 w10w10 w20w20 b10b10 b20b20, 使得给定输入 x 下得到的输出 ,和目标输出 y^y^ 之间的平均均方误差 (Mean Square Errors, MSE) 最小化 。
我们首先需要思考,有几个参数?由于是两层神经网络,结构如下图(图片来源http://stackoverflow.com/questions/22054877/backpropagation-training-stuck) 其中输入层为 3,中间层为 4,输出层是 2:
因此,其中总共包含 (3x4+4) + (4*2+2) = 26 个参数需要训练。我们可以如图初始化参数。参数可以随机初始化,也可以随便指定:
Python 3重置复制
Python示例代码
1
import numpy as np
2
w1_0 = np.array([[ 0.1, 0.2, 0.3, 0.4],
3
[ 0.5, 0.6, 0.7, 0.8],
4
[ 0.9, 1.0, 1.1, 1.2]])
5
w2_0 = np.array([[ 1.3, 1.4],
6
[ 1.5, 1.6],
7
[ 1.7, 1.8],
8
[ 1.9, 2.0]])
9
?
10
b1_0 = np.array( [-2.0, -6.0, -1.0, -7.0])
11
b2_0 = np.array( [-2.5, -5.0])
运行
我们进行一次正向传播:
Python 3重置复制
Python示例代码
1
x = [1,2,3]
2
y = [-0.85, 0.72]
3
?
4
o1 = np.dot(x, w1_0 ) + b1_0
5
os1 = np.power(1+np.exp(o1*-1), -1)
6
o2 = np.dot(os1, w2_0) + b2_0
7
os2 = np.tanh(o2)
运行
再进行一次反向传播:
Python 3重置复制
Python示例代码
1
alpha = 0.1
2
grad_os2 = (y - os2) * (1-np.power(os2, 2))
3
grad_os1 = np.dot(w2_0, grad_os2.T).T * (1-os1)*os1
4
grad_w2 = ...
5
grad_b2 = ...
6
...
7
...
8
w2_0 = w2_0 + alpha * grad_w2
9
b2_0 = b2_0 + alpha * grad_b2
10
...
11
...
运行
如此反复多次,直到最终误差收敛。进行反向传播时,需要将所有参数的求导结果都写上去,然后根据求导结果更新参数。我这里就没有写全,因为一层一层推导实在是太过麻烦。更重要的是,当我们需要训练新的神经网络结构时,这些都需要重新推导一次,费时费力。
然而仔细想一想,这个推导的过程也并非无规律可循。即上一级的神经网络梯度输出,会被用作下一级计算梯度的输入,同时下一级计算梯度的输出,会被作为上一级神经网络的输入。于是我们就思考能否将这一过程抽象化,做成一个可以自动求导的框架?OK,以 Tensorflow 为代表的一系列深度学习框架,正是根据这一思路诞生的。
2.深度学习框架
近几年最火的深度学习框架是什么?毫无疑问,Tensorflow 高票当选。
但实际上,这些深度学习框架都具有一些普遍特征。Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件:
张量(Tensor)
基于张量的各种操作
计算图(Computation Graph)
自动微分(Automatic Differentiation)工具
BLAS、cuBLAS、cuDNN等拓展包
其中,张量 Tensor 可以理解为任意维度的数组——比如一维数组被称作向量(Vector),二维的被称作矩阵(Matrix),这些都属于张量。有了张量,就有对应的基本操作,如取某行某列的值,张量乘以常数等。运用拓展包其实就相当于使用底层计算软件加速运算。
我们今天重点介绍的,就是计算图模型,以及自动微分两部分。首先介绍以 Torch 框架为例,谈谈如何实现自动求导,然后再用最简单的方法,实现这两部分。
2.1. 深度学习框架如何实现自动求导
诸如 Tensorflow 这样的深度学习框架的入门,网上有大量的 几行代码、几分钟入门这样的资料,可以快速实现手写数字识别等简单任务。但如果想深入了解 Tensorflow 的背后原理,可能就不是这么容易的事情了。这里我们简单的谈一谈这一部分。
我们知道,当我们拿到数据、训练神经网络时,网络中的所有参数都是 变量。训练模型的过程,就是如何得到一组最佳变量,使预测最准确的过程。这个过程实际上就是,输入数据经过 正向传播,变成预测,然后预测与实际情况的误差 反向传播 误差回来,更新变量。如此反复多次,得到最优的参数。这里就会遇到一个问题,神经网络这么多层,如何保证正向、反向传播都可以正确运行?
值得思考的是,这两种传播方式,都具有 管道传播 的特征。正向传播一层一层算就可以了,上一层网络的结果作为下一层的输入。而反向传播过程可以利用 链式求导法则,从后往前,不断将误差分摊到每一个参数的头上。
图片来源:Colah博客
进过抽象化后,我们发现,深度学习框架中的 每一个模块都需要两个函数,一个连接正向,一个连接反向。这里的正向和反向,如同武侠小说中的 任督二脉。而训练模型的过程,数据通过正向传播生成预测结果,进而将误差反向传回更新参数,就如同让真气通过任督二脉在体内游走,随着训练误差逐渐缩小收敛,深度神经网络也将打通任督二脉。
接下来,我们将首先审视一下 Torch 框架的源码如何实现这两部分内容,其次我们通过 Python 直接编写一个最简单的深度学习框架。
举 Torch 的 nn 项目的例子是因为Torch 的代码文件结构比较简单,Tensorflow 的规律和Torch比较近似,但文件结构相对更加复杂,有兴趣的可以仔细读读相关文章。
Torch nn 模块Github 源码 这个目录下的几乎所有 .lua 文件,都有这两个函数:
# lua
function xxx:updateOutput(input)
input.THNN.xxx_updateOutput(
input:cdata(),
self.output:cdata()
)
return self.output
end
function xxx:updateGradInput(input, gradOutput)
input.THNN.xxx_updateGradInput(
input:cdata(),
gradOutput:cdata(),
self.gradInput:cdata(),
self.output:cdata()
)
return self.gradInput
end
这里其实是相当于留了两个方法的定义,没有写具体功能。具体功能的代码,在 ./lib/THNN/generic 目录 中用 C 实现实现,具体以 Sigmoid 函数举例。
我们知道 Sigmoid 函数的形式是: 代码实现起来是这样:
# lua
void THNN_(Sigmoid_updateOutput)( THNNState
*state, THTensor
*input, THTensor
*output)
{
THTensor_(resizeAs)(output, input);
TH_TENSOR_APPLY2(real, output, real, input,
*output_data = 1./(1.+ exp(- *input_data));
);
}
Sigmoid 函数求导变成:所以这里在实现的时候就是:
// c
void THNN_(Sigmoid_updateGradInput)(
THNNState *state,
THTensor *input,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)
{
THNN_CHECK_NELEMENT(input, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(real, gradInput, real, gradOutput, real, output,
real z = * output_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;
);
}
大家应该注意到了一点, updateOutput 函数, output_data 在等号左边, input_data 在等号右边。 而 updateGradInput 函数, gradInput_data 在等号左边, gradOutput_data 在等号右边。 这里,output = f(input) 对应的是 正向传播 input = f(output) 对应的是 反向传播。
2.2 用 Python 直接编写一个最简单的深度学习框架
这部分内容属于“造轮子”,并且借用了优达学城的一个小型项目 MiniFlow。
数据结构部分
首先,我们实现一个父类 Node,然后基于这个父类,依次实现 Input Linear Sigmoid 等模块。这里运用了简单的 Python Class 继承。这些模块中,需要将 forward 和 backward 两个方法针对每个模块分别重写。
代码如下:
Python 3重置复制
Python示例代码
1
class Node(object):
2
"""
3
Base class for nodes in the network.
4
?
5
Arguments:
6
?
7
`inbound_nodes`: A list of nodes with edges into this node.
8
"""
9
def __init__(self, inbound_nodes=[]):
10
"""
11
Node‘s constructor (runs when the object is instantiated). Sets
12
properties that all nodes need.
13
"""
14
# A list of nodes with edges into this node.
15
self.inbound_nodes = inbound_nodes
16
# The eventual value of this node. Set by running
17
# the forward() method.
18
self.value = None
19
# A list of nodes that this node outputs to.
20
self.outbound_nodes = []
21
# New property! Keys are the inputs to this node and
22
# their values are the partials of this node with
23
# respect to that input.
24
self.gradients = {}
25
?
26
# Sets this node as an outbound node for all of
27
# this node‘s inputs.
28
for node in inbound_nodes:
29
node.outbound_nodes.append(self)
30
?
31
def forward(self):
32
"""
33
Every node that uses this class as a base class will
34
need to define its own `forward` method.
35
"""
36
raise NotImplementedError
37
?
38
def backward(self):
39
"""
40
Every node that uses this class as a base class will
41
need to define its own `backward` method.
42
"""
43
raise NotImplementedError
44
?
45
?
46
class Input(Node):
47
"""
48
A generic input into the network.
49
"""
50
def __init__(self):
51
Node.__init__(self)
52
?
53
def forward(self):
54
pass
55
?
56
def backward(self):
57
self.gradients = {self: 0}
58
for n in self.outbound_nodes:
59
self.gradients[self] += n.gradients[self]
60
?
61
class Linear(Node):
62
"""
63
Represents a node that performs a linear transform.
64
"""
65
def __init__(self, X, W, b):
66
Node.__init__(self, [X, W, b])
67
?
68
def forward(self):
69
"""
70
Performs the math behind a linear transform.
71
"""
72
X = self.inbound_nodes[0].value
73
W = self.inbound_nodes[1].value
74
b = self.inbound_nodes[2].value
75
self.value = np.dot(X, W) + b
76
?
77
def backward(self):
78
"""
79
Calculates the gradient based on the output values.
80
"""
81
self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}
82
for n in self.outbound_nodes:
83
grad_cost = n.gradients[self]
84
self.gradients[self.inbound_nodes[0]] += np.dot(grad_cost, self.inbound_nodes[1].value.T)
85
self.gradients[self.inbound_nodes[1]] += np.dot(self.inbound_nodes[0].value.T, grad_cost)
86
self.gradients[self.inbound_nodes[2]] += np.sum(grad_cost, axis=0, keepdims=False)
87
?
88
?
89
class Sigmoid(Node):
90
"""
91
Represents a node that performs the sigmoid activation function.
92
"""
93
def __init__(self, node):
94
Node.__init__(self, [node])
95
?
96
def _sigmoid(self, x):
97
"""
98
This method is separate from `forward` because it
99
will be used with `backward` as well.
100
?
101
`x`: A numpy array-like object.
102
"""
103
return 1. / (1. + np.exp(-x))
104
?
105
def forward(self):
106
"""
107
Perform the sigmoid function and set the value.
108
"""
109
input_value = self.inbound_nodes[0].value
110
self.value = self._sigmoid(input_value)
111
?
112
def backward(self):
113
"""
114
Calculates the gradient using the derivative of
115
the sigmoid function.
116
"""
117
self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}
118
for n in self.outbound_nodes:
119
grad_cost = n.gradients[self]
120
sigmoid = self.value
121
self.gradients[self.inbound_nodes[0]] += sigmoid * (1 - sigmoid) * grad_cost
122
?
123
class Tanh(Node):
124
def __init__(self, node):
125
"""
126
The tanh cost function.
127
Should be used as the last node for a network.
128
"""
129
Node.__init__(self, [node])
130
?
131
def forward(self):
132
"""
133
Calculates the tanh.
134
"""
135
input_value = self.inbound_nodes[0].value
136
self.value = np.tanh(input_value)
137
?
138
def backward(self):
139
"""
140
Calculates the gradient of the cost.
141
"""
142
self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}
143
for n in self.outbound_nodes:
144
grad_cost = n.gradients[self]
145
tanh = self.value
146
self.gradients[self.inbound_nodes[0]] += (1 + tanh) * (1 - tanh) * grad_cost.T
147
?
148
?
149
?
150
class MSE(Node):
151
def __init__(self, y, a):
152
"""
153
The mean squared error cost function.
154
Should be used as the last node for a network.
155
"""
156
Node.__init__(self, [y, a])
157
?
158
def forward(self):
159
"""
160
Calculates the mean squared error.
161
"""
162
y = self.inbound_nodes[0].value.reshape(-1, 1)
163
a = self.inbound_nodes[1].value.reshape(-1, 1)
164
?
165
self.m = self.inbound_nodes[0].value.shape[0]
166
self.diff = y - a
167
self.value = np.mean(self.diff**2)
168
?
169
def backward(self):
170
"""
171
Calculates the gradient of the cost.
172
"""
173
self.gradients[self.inbound_nodes[0]] = (2 / self.m) * self.diff
174
self.gradients[self.inbound_nodes[1]] = (-2 / self.m) * self.diff
运行
调度算法与优化部分
优化部分则会在以后的系列中单独详细说明。这里主要将简单讲一下图计算的算法调度。就是实际上Tensorflow的各个模块会生成一个有向无环图,如下图(来源http://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/):
在计算过程中,几个模块存在着相互依赖关系,比如要计算模块1,就必须完成模块3和模块4,而要完成模块3,就需要在之前顺次完成模块5、2;因此这里可以使用 Kahn 算法作为调度算法(下面的 topological_sort 函数),从计算图中,推导出类似 5->2->3->4->1 的计算顺序。
Python 3重置复制
Python示例代码
1
def topological_sort(feed_dict):
2
"""
3
Sort the nodes in topological order using Kahn‘s Algorithm.
4
?
5
`feed_dict`: A dictionary where the key is a `Input` Node and the value is the respective value feed to that Node.
6
?
7
Returns a list of sorted nodes.
8
"""
9
input_nodes = [n for n in feed_dict.keys()]
10
G = {}
11
nodes = [n for n in input_nodes]
12
while len(nodes) > 0:
13
n = nodes.pop(0)
14
if n not in G:
15
G[n] = {‘in‘: set(), ‘out‘: set()}
16
for m in n.outbound_nodes:
17
if m not in G:
18
G[m] = {‘in‘: set(), ‘out‘: set()}
19
G[n][‘out‘].add(m)
20
G[m][‘in‘].add(n)
21
nodes.append(m)
22
?
23
L = []
24
S = set(input_nodes)
25
while len(S) > 0:
26
n = S.pop()
27
if isinstance(n, Input):
28
n.value = feed_dict[n]
29
?
30
L.append(n)
31
for m in n.outbound_nodes:
32
G[n][‘out‘].remove(m)
33
G[m][‘in‘].remove(n)
34
if len(G[m][‘in‘]) == 0:
35
S.add(m)
36
return L
37
?
38
?
39
def forward_and_backward(graph):
40
"""
41
Performs a forward pass and a backward pass through a list of sorted Nodes.
42
?
43
Arguments:
44
?
45
`graph`: The result of calling `topological_sort`.
46
"""
47
for n in graph:
48
n.forward()
49
?
50
for n in graph[::-1]:
51
n.backward()
52
?
53
?
54
def sgd_update(trainables, learning_rate=1e-2):
55
"""
56
Updates the value of each trainable with SGD.
57
?
58
Arguments:
59
?
60
`trainables`: A list of `Input` Nodes representing weights/biases.
61
`learning_rate`: The learning rate.
62
"""
63
for t in trainables:
64
t.value = t.value - learning_rate * t.gradients[t]
运行
使用模型
Python 3重置复制
Python示例代码
1
import numpy as np
2
from sklearn.utils import resample
3
np.random.seed(0)
4
?
5
w1_0 = np.array([[ 0.1, 0.2, 0.3, 0.4],
6
[ 0.5, 0.6, 0.7, 0.8],
7
[ 0.9, 1.0, 1.1, 1.2]])
8
w2_0 = np.array([[ 1.3, 1.4],
9
[ 1.5, 1.6],
10
[ 1.7, 1.8],
11
[ 1.9, 2.0]])
12
b1_0 = np.array( [-2.0, -6.0, -1.0, -7.0])
13
b2_0 = np.array( [-2.5, -5.0])
14
?
15
X_ = np.array([[1.0, 2.0, 3.0]])
16
y_ = np.array([[-0.85, 0.75]])
17
n_features = X_.shape[1]
18
?
19
W1_ = w1_0
20
b1_ = b1_0
21
W2_ = w2_0
22
b2_ = b2_0
23
?
24
X, y = Input(), Input()
25
W1, b1 = Input(), Input()
26
W2, b2 = Input(), Input()
27
?
28
l1 = Linear(X, W1, b1)
29
s1 = Sigmoid(l1)
30
l2 = Linear(s1, W2, b2)
31
t1 = Tanh(l2)
32
cost = MSE(y, t1)
33
?
34
feed_dict = {
35
X: X_, y: y_,
36
W1: W1_, b1: b1_,
37
W2: W2_, b2: b2_
38
}
39
?
40
epochs = 10
41
m = X_.shape[0]
42
batch_size = 1
43
steps_per_epoch = m // batch_size
44
?
45
graph = topological_sort(feed_dict)
46
trainables = [W1, b1, W2, b2]
47
?
48
l_Mat_W1 = [w1_0]
49
l_Mat_W2 = [w2_0]
50
l_Mat_out = []
51
?
52
l_val = []
53
for i in range(epochs):
54
loss = 0
55
for j in range(steps_per_epoch):
56
X_batch, y_batch = resample(X_, y_, n_samples=batch_size)
57
X.value = X_batch
58
y.value = y_batch
59
forward_and_backward(graph)
60
sgd_update(trainables, 0.1)
61
loss += graph[-1].value
62
?
63
mat_W1 = []
64
mat_W2 = []
65
for i in graph:
66
try:
67
if (i.value.shape[0] == 3) and (i.value.shape[1] == 4):
68
mat_W1 = i.value
69
if (i.value.shape[0] == 4) and (i.value.shape[1] == 2):
70
mat_W2 = i.value
71
except:
72
pass
73
?
74
l_Mat_W1.append(mat_W1)
75
l_Mat_W2.append(mat_W2)
76
l_Mat_out.append(graph[9].value)
运行
来观察一下。当然还有更高级的可视化方法:可视化的神经网络
Python 3重置复制
Python示例代码
1
import matplotlib.pyplot as plt
2
%matplotlib inline
3
?
4
fig = plt.figure( figsize=(14,10))
5
ax0 = fig.add_subplot(131)
6
#aax0 = fig.add_axes([0, 0, 0.3, 0.1])
7
c0 = ax0.imshow(np.array(l_Mat_out).reshape([-1,2]).T, interpolation=‘nearest‘,aspect=‘auto‘, cmap="Reds", vmax=1, vmin=-1)
8
ax0.set_title("Output")
9
?
10
cbar = fig.colorbar(c0, ticks=[-1, 0, 1])
11
?
12
?
13
?
14
ax1 = fig.add_subplot(132)
15
c1 = ax1.imshow(np.array(l_Mat_W1).reshape(len(l_Mat_W1), 12).T, interpolation=‘nearest‘,aspect=‘auto‘, cmap="Reds")
16
ax1.set_title("w1")
17
cbar = fig.colorbar(c1, ticks=[np.min(np.array(l_Mat_W1)), np.max(np.array(l_Mat_W1))])
18
?
19
ax2 = fig.add_subplot(133)
20
c2 = ax2.imshow(np.array(l_Mat_W2).reshape(len(l_Mat_W2), 8).T, interpolation=‘nearest‘,aspect=‘auto‘, cmap="Reds")
21
ax2.set_title("w2")
22
cbar = fig.colorbar(c2, ticks=[np.min(np.array(l_Mat_W2)), np.max(np.array(l_Mat_W2))])
23
?
24
ax0.set_yticks([0,1])
25
ax0.set_yticklabels(["out0", "out1"])
26
?
27
ax1.set_xlabel("epochs")
28
#for i in range(len(l_Mat_W1)):
运行
我们注意到,随着训练轮数 Epoch 不断增多, Output 值从最初的 [0.72, -0.88] 不断接近 y = [-0.85, 0.72], 其背后的原因,是模型参数不断的从初始化的值变化、更新,如图中的 w1 w2 两个矩阵。
好了,最简单的轮子已经造好了。 我们的轮子,实现了 Input Linear Sigmoid Tanh 以及 MSE 这几个模块。 接下来的内容,我们将基于现在最火的轮子 Tensorflow,详细介绍一下更多的模块。
最后,本篇只是造了个最基本的轮子,我们集智的知乎专栏上,有一个系列文章,正在介绍如何在Matlab上手写深度学习框架,欢迎大家围观。
标签:必须 www oid ... not 编写 代码实现 最优 except
原文地址:http://www.cnblogs.com/yangshunde/p/7740055.html