码迷,mamicode.com
首页 > 其他好文 > 详细

Limit point, Accumulation point, and Condensation point of a set

时间:2017-10-28 12:38:59      阅读:173      评论:0      收藏:0      [点我收藏+]

标签:ace   mit   any   init   let   rom   only   ons   UI   

The three notions mentioned above should be clearly distinguished.

If $A$ is a subset of a topological space $X$ and $x$ is a point of $X$, then $x$ is an accumulation point of $A$ if and only if every neighbourhood of $x$ intersects $A\backslash \{x\}$.

It is a condensation point of $A$ if and only if every neighbourhood of it contains uncountably many points of $A$.

The term limit point is slightly ambiguous. One might call $x$ a limit point of $A$ if every neighbourhood of $x$ contains infinitely many points of $A$, but this is not standard.

Wikipedia: Let ${S}$ be a subset of a topological space $X$. A point $x$ in $X$ is a limit point of $S$ if every neighbourhood of $x$ contains at least one point of $S$ different from $x$ itself.

Limit point, Accumulation point, and Condensation point of a set

标签:ace   mit   any   init   let   rom   only   ons   UI   

原文地址:http://www.cnblogs.com/aujun/p/5026285.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!