标签:color fail elf 计算 思维方式 场景 nba min --
本文用于基本入门理解。
强化学习的基本理论 : R, S, A 这些就不说了。
先设想两个场景:
一。 1个 5x5 的 格子图, 里面有一个目标点, 2个死亡点
二。 一个迷宫, 一个出发点, 3处 分叉点, 5个死角, 1条活路
Q-learning 的概念 其实就是一个算法, 数学的,或者软件程序的算法而已。
对于这种 死的(固定的游戏), 我个人觉得其实就是个穷举算法而已。
Q-learning 步骤:
场景一:
假设前提:
成功的路 A1, A2, ..... An , A-succ
失败的路 A1, B2, ..... Bn , A-Fail
失败的路 A1, C3, ..... Cn , B-Fail
最后成功后, 给个好处 R = 1, 失败,给个R = -1
1. 先随机走, 走出三条路来, A1 -- > A-succ , A1 -- > A-Fail, A1 -- > B-Fail
2. 走对的路, 最后一个点 An = 1, Bn = -1, Cn = -1 ; 实际上是 x 参数(0.90 自定义)
3. 接下,继续走, 走出 An-1 Bn-1,
3. 接下,继续走, 走出 An-2 Bn-2,
3. 接下,继续走, 走出 An-3 Bn-3,
3. 接下,继续走, 走出 An-4 Bn-4,
4.最后回到 A1, 发现, A1, 向上走 是 0.99, 向右走势 0.10, 向下走势 - 0.50
这样就得到了一个完整的表格, 叫 Q-table, 占在哪个位置,往哪个方向走。 更容达到目标。
总结: Q-learning 其实是个很 low 的算法, 用谚语说就是:一回生,二回熟。
场景二其实是一样的问题:
拐角处才有选择, 非拐角处过滤掉。
个人觉得,用Q-learning 做迷宫, 还不如用 右手法则走迷宫; 反正电脑是傻的, 能达到目标就好。
更新公式:
q_target = r + self.gamma * self.q_table.ix[s_, :].max()
self.q_table.ix[s, a] += self.lr * (q_target - q_predict)
Sarsa 与Q-learning 的区别仅仅在于, 更新Q-table 表里的某一项的时候, 是先走, 还是先计算更新而已。 没有大的区别。
再说 DQN :
DQN 在原先的Q-learning 上做了几个处理:
1. 在选择Action 的时候, 不是用 values.max; 而是用 predict().max
2. 在更新的时候, 不是更新 Q-learning 里的值, 而是通过训练 定量的数据minbatch , 来更新网络的 weights 。
更新了 weights , 其实就是变相更新 values.max 的计算方式; 也就确定了 Action 的选择。
个人总结:
对于走宫格这类问题, 强化的概念反应在, 随机走路后, 成功的路多走走。 逐步稳定固化。
迷宫 虽小, 可以用程序暴力解决(穷举), 但是里面包含的思维方式,值得重视。 这样可以拓展
到规模很大的计算上来, 可以加速成效。 但是用一维 4 dim 的(小数据)数据,去训练神经网络
感觉是大炮打蚊子。
强化学习 - Q-learning Sarsa 和 DQN 的理解
标签:color fail elf 计算 思维方式 场景 nba min --
原文地址:http://www.cnblogs.com/xiaoxuebiye/p/7753772.html