码迷,mamicode.com
首页 > 其他好文 > 详细

高斯消元模板(通用+异或)

时间:2017-10-30 15:05:15      阅读:185      评论:0      收藏:0      [点我收藏+]

标签:swa   消元   main   oid   stream   ase   return   mina   stdin   

先来一个通用的版子:

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;

const int MAXN=50;



int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元



/*
void Debug(void)
{
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
*/


inline int gcd(int a,int b)
{
    int t;
    while(b!=0)
    {
        t=b;
        b=a%b;
        a=t;
    }
    return a;
}
inline int lcm(int a,int b)
{
    return a/gcd(a,b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0;i<=var;i++)
    {
        x[i]=0;
        free_x[i]=true;
    }

    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0;k < equ && col < var;k++,col++)
    {// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k)
        {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
            {
                LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col;j<var+1;j++)
                {
                    a[i][j] = a[i][j]*ta-a[k][j]*tb;
                }
            }
        }
    }

  //  Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var)
    {
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
        {
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int main(void)
{
    freopen("in.txt", "r", stdin);
    freopen("out.txt","w",stdout);
    int i, j;
    int equ,var;
    while (scanf("%d %d", &equ, &var) != EOF)
    {
        memset(a, 0, sizeof(a));
        for (i = 0; i < equ; i++)
        {
            for (j = 0; j < var + 1; j++)
            {
                scanf("%d", &a[i][j]);
            }
        }
//        Debug();
        int free_num = Gauss(equ,var);
        if (free_num == -1) printf("无解!\n");
   else if (free_num == -2) printf("有浮点数解,无整数解!\n");
        else if (free_num > 0)
        {
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for (i = 0; i < var; i++)
            {
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        else
        {
            for (i = 0; i < var; i++)
            {
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
}

异或版:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int dir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
int mp[16][16];
int x[16*16+2];// 用来存储解的情况
int a[16*16+2][16*16+2];
const int inf=90000009;
void init()
{
    memset(x,0,sizeof(x));
    memset(a,0,sizeof(a));
}
int check(int x,int y,int n)
{
    if(x<=0 || x>=n+1 || y<=0 || y>=n+1) return -1;
    return 1;
}
void Debug(int n,int m)
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++) cout<<a[i][j]<< ;
        cout<<endl;
    }
}
int gauss(int n)
{
    int max_r;
    int col,k;
    int i,j;
    int free_num=0;
    int freex[16+2];
    for(int z=1;z<=n;z++) // 构造方程矩阵
    {
        for(int zz=1;zz<=n;zz++)
        {
            i=(z-1)*n+zz;// row
            j=(z-1)*n+zz;
            a[i][n*n+1]=mp[z][zz];
            a[i][j]=1;
            for(int low=0;low<4;low++)
            {
                int xx=z+dir[low][0];
                int yy=zz+dir[low][1];
                if(check(xx,yy,n)==1) //attention !!
                {
                    j=(xx-1)*n+yy;
                  //  cout<<low<<‘ ‘<<xx<<‘ ‘<<yy<<endl;
                    a[i][j]=1;
                }
            }
        }
    }
   //Debug(n*n,n*n+1);
    col=k=1;
    while( k<=n*n && col<=n*n)
    {
        max_r=k;
        for(int u=k;u<=n*n;u++) if(a[u][col])
        {
            max_r=u;
            break;
        }
        if(a[max_r][col]!=0)
        {
            if(max_r!=k)
            {
                for(int u=0;u<=n*n+1;u++) swap(a[max_r][u],a[k][u]);
            }
            for(int u=k+1;u<=n*n;u++)  // 转化为行阶梯
            {
                if(a[u][col])
                {
                    for(int z=0;z<=n*n+1;z++) a[u][z]^=a[k][z];
                }
            }
            k++;
        }
        else freex[free_num++]=col; // 当最大的也是0的时候,对应的col为自由元
        col++;
    }
   // Debug(n*n,n*n+1);
    // 无解的时候
    for(int u=k;u<=n*n;u++)
    {
        for(int uu=1;uu<=n*n+1;uu++) if(a[u][uu]) return -1;
    }
  //  cout<<"123"<<endl;
  //  cout<<k<<endl;
    if(k==n*n+1) // 有唯一解的时候
    {
    //    cout<<"1234"<<endl;
        int temp=0;
        int ret=0;
        for(int z=n*n; z>=1; z--)
        {
            x[z]=a[z][n*n+1];
            for(int zz=z+1; zz<=n*n; zz++) if(a[z][zz])
                {
                    x[z]^=x[zz];
                }
            if(x[z]==1) ret++;
        }
        return ret;
    }
    // 枚举自由变元
    int ans=inf;
    for(int i=0;i<(1<<free_num);i++) // 二进制枚举
    {
        int cnt=0;
        int temp=i;
        for(int j=0;j<free_num;j++)
        {
            if(temp & (1<<j))
            {
                x[freex[j]]=1;
                cnt++;
            }
        }

        for(int z=n*n; z>=1; z--)
        {
            x[z]=a[z][n*n+1];
            for(int zz=z+1; zz<=n*n; zz++) if(a[z][zz])
                {
                    x[z]^=x[zz];
                }
            if(x[z]==1) cnt++;
        }
        ans=min(ans,cnt);
    }
    return ans;
}
int main()
{
    int t;
    scanf("%d",&t);
    int Case=0;
    while(t--)
    {
        int n;
        init();//a x
        scanf("%d",&n);
        char temp[16][16];
        for(int i=0;i<n;i++)
        {
            scanf("%s",temp[i]);
        }
        for(int i=0;i<n;i++) // 增广矩阵
        {
            for(int j=0;j<n;j++)
            {
                if(temp[i][j]==y) mp[i+1][j+1]=0;
                else mp[i+1][j+1]=1;
            }
        }
        int flag=gauss(n);
        if(flag==-1)
        {
            cout<<"inf"<<endl;
            continue;
        }

        /*
        for(int i=1;i<=30;i++)
        {
            if(i%6!=0) printf("%d ",x[i]);
            else printf("%d\n",x[i]);
        }
        */
        cout<<flag<<endl;
    }
    return 0;
}

 

高斯消元模板(通用+异或)

标签:swa   消元   main   oid   stream   ase   return   mina   stdin   

原文地址:http://www.cnblogs.com/z1141000271/p/7753566.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!