码迷,mamicode.com
首页 > 其他好文 > 详细

超简单!pytorch入门教程(二):Autograd

时间:2017-10-30 16:58:57      阅读:193      评论:0      收藏:0      [点我收藏+]

标签:shu   http   ima   深度学习   pac   深度   imageview   数据类型   data-   

一、autograd自动微分

autograd是专门为了BP算法设计的,所以这autograd只对输出值为标量的有用,因为损失函数的输出是一个标量。如果y是一个向量,那么backward()函数就会失效。不知道BP算法是什么的同学,估计也不知道什么是深度学习,建议先看Zen君提供的教材。

二、autograd的内部机理

variable是tensor的外包装,variable类型变量的data属性存储着tensor数据,grad属性存储关于该变量的导数,creator是代表该变量的创造者。

技术分享
数据向前传输和向后传输生成导数的过程示意图
如图,假设我们有一个输入变量input(数据类型为Variable)input是用户输入的,所以其创造者creator为null值,input经过第一个数据操作operation1(比如加减乘除运算)得到output1变量(数据类型仍为Variable),这个过程中会自动生成一个function1的变量(数据类型为Function的一个实例),而output1的创造者就是这个function1。随后,output1再经过一个数据操作生成output2,这个过程也会生成另外一个实例function2,output2的创造者creator为function2。
 
在这个向前传播的过程中,function1和function2记录了数据input的所有操作历史,当output2运行其backward函数时,会使得function2和function1自动反向计算input的导数值并存储在grad属性中。
 
creator为null的变量才能被返回导数,比如input,若把整个操作流看成是一张图(Graph),那么像input这种creator为null的被称之为图的叶子(graph leaf)。而creator非null的变量比如output1和output2,是不能被返回导数的,它们的grad均为0。所以只有叶子节点才能被autograd。

作者:Zen_君
链接:http://www.jianshu.com/p/cbce2dd60120
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

超简单!pytorch入门教程(二):Autograd

标签:shu   http   ima   深度学习   pac   深度   imageview   数据类型   data-   

原文地址:http://www.cnblogs.com/CATHY-MU/p/7754998.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!