有个以坐标原点为圆心的圆,给出圆上的点的关于x轴的夹角,以及圆的半径,求圆上点所能构成的三角形的面积和
我的做法:
先算出每个点的坐标,枚举所有三个点的组合,叉积求面积
我的代码:
#include<iostream> #include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<algorithm> using namespace std; const double pi=acos(-1.0); struct dot { double x,y; dot(){} dot(double a,double b){x=a,y=b;} friend dot operator -(dot a,dot b){return dot(a.x-b.x,a.y-b.y);} friend double operator /(dot a,dot b){return a.x*b.x+a.y*b.y;} friend double operator *(dot a,dot b){return a.x*b.y-a.y*b.x;} }; double dis(dot a,dot b) { return sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2)); } double cang(dot a,dot b) { return acos(a/b/dis(a,dot(0,0))/dis(b,dot(0,0))); } double cg1(double a) { return a/pi*180; } double cg2(double a) { return a/180*pi; } int main() { int n,i,j,k; double r,t,ans; dot a[510]; while(cin>>n>>r) { if(n+r==0) break; for(i=0;i<n;i++) { cin>>t; t=cg2(t); a[i]=dot(r*cos(t),r*sin(t)); } ans=0; for(i=0;i<n;i++) for(j=i+1;j<n;j++) for(k=j+1;k<n;k++) ans+=fabs((a[j]-a[i])*(a[k]-a[i])/2); printf("%.0lf\n",ans); } }
原文地址:http://blog.csdn.net/stl112514/article/details/39234703