码迷,mamicode.com
首页 > 其他好文 > 详细

二维凸包 Graham 算法

时间:2014-09-13 00:50:24      阅读:409      评论:0      收藏:0      [点我收藏+]

标签:python   算法   pascal   


三点以下的情况就不写了


Python:

import math

class Point( object ):

    def __init__( self, x, y ):
        self.x = x
        self.y = y


    def __cmp__( self, other ):
        if self.y < other.y:
            return -1
        elif self.y == other.y:
            if self.x < other.x:
                return -1
            elif self.x == other.x:
                return 0
            else:
                return 1
        else:
            return 1


    def __repr__( self ):
        return "(X: {x}, Y:{y})".format( x = self.x, y = self.y )
    

    @staticmethod
    def distance( p1, p2 ):
        return math.sqrt( ( p1.x - p2.x ) * ( p1.x - p2.x ) +                           ( p1.y - p2.y ) * ( p1.y - p2.y ) )


    @staticmethod
    def crossMultiply( p1, p2, p3 ):
        return ( p2.x - p1.x ) * ( p3.y - p1.y ) -                ( p2.y - p1.y ) * ( p3.x - p1.x )

    
points  = []
results = []
    

def graham():

    def find_start_point():
        res = Point( float( 'inf' ), float( 'inf' ) )
        for p in points:
            if res > p:
                res = p
        return res

    def _cmp( p1, p2 ):
        m = Point.crossMultiply( start_point, p1, p2 )
        if m < 0:
            return 1
        elif m == 0 and              Point.distance( start_point, p1 ) < Point.distance( start_point, p2 ):
            return 1
        else:
            return -1
          
    global points, results
    
    start_point = find_start_point()
    points.remove( start_point )
    points = sorted( points, _cmp )
    results.extend( [start_point, points.pop( 0 ), points.pop( 0 )] )
    
    for p in points:
        while ( Point.crossMultiply( results[-2], results[-1], p ) ) <= 0:
            results.pop()
        results.append( p )

    return results
    


if __name__ == "__main__":
    
    points.extend( [ Point( 30, 30 ),
                     Point( 50, 60 ),
                     Point( 60, 20 ),
                     Point( 70, 45 ),
                     Point( 86, 39 ),
                     Point( 112, 60 ),
                     Point( 200, 113 ),
                     Point( 250, 50 ),
                     Point( 300, 200 ),
                     Point( 130, 240 ),
                     Point( 76, 150 ),
                     Point( 47, 76 ),
                     Point( 36, 40 ),
                     Point( 33, 35 ) ] )
    res = graham()
    print res
    


Cpp:

#include <iostream>
#include <cmath>
#include <deque>
#include <algorithm>
using namespace std;

class Point
{
    public:

        Point( double x, double y )
        {
            this->x = x;
            this->y = y;
        }

        Point( const Point& other )
        {
            this->x = other.x;
            this->y = other.y;
        }

        bool operator < ( const Point& other ) const
        {
            if( this->y < other.y )
                return true;
            else if( this->y == other.y )
            {
                if( this->x < other.x )
                    return true;
                else
                    return false;
            }
            else
                return false;
        }

        bool operator == ( const Point& other ) const
        {
            return ( this->x == other.x ) && ( this->y == other.y );
        }

        friend ostream& operator << ( ostream& os, const Point& p )
        {
            os << "( X: " << p.x << ", " << "Y: " << p.y << " )" << endl;
            return os;
        }

        double x;
        double y;
};


Point start_point( 1 << 30, 1 << 30 );
deque< Point > points;
deque< Point > result;


double dist( const Point& p1, const Point& p2 )
{
    return sqrt( ( p1.x - p2.x ) * ( p1.x - p2.x ) + ( p1.y - p2.y ) * ( p1.y - p2.y ) );
}


double crossMultiply( const Point& p1, const Point& p2, const Point& p3 )
{
    return ( ( p2.x - p1.x ) * ( p3.y - p1.y ) - ( p2.y - p1.y ) * ( p3.x - p1.x ) );
}


bool cmp( const Point& p1, const Point& p2 )
{
    double m = crossMultiply( start_point, p1, p2 );
    if( m < 0 )
        return false;
    else if( m == 0 && ( dist( start_point, p1 ) < dist( start_point, p2 ) ) )
        return false;
    else
        return true;
}


void graham()
{
    for( int i = 0; i < points.size(); ++i )
        if( points[i] < start_point )
            start_point = points[i];

    for( deque< Point >::iterator iter = points.begin(); iter != points.end(); ++iter )
    {
        if( *iter == start_point )
        {
            points.erase( iter );
            break;
        }
    }

    sort( points.begin(), points.end(), cmp );
    result.push_back( start_point );
    result.push_back( points.front() );
    points.pop_front();
    result.push_back( points.front() );
    points.pop_front();

    for( int i = 0; i < points.size(); ++i )
    {
        while( crossMultiply( result[result.size() - 2], result[result.size() - 1], points[i] ) <= 0 )
            result.pop_back();
        result.push_back( points[i] );
    }
}


int main()
{
    points.push_back( Point( 30, 30 ) );
    points.push_back( Point( 50, 60 ) );
    points.push_back( Point( 60, 20 ) );
    points.push_back( Point( 70, 45 ) );
    points.push_back( Point( 86, 39 ) );
    points.push_back( Point( 112, 60 ) );
    points.push_back( Point( 200, 113 ) );
    points.push_back( Point( 250, 50 ) );
    points.push_back( Point( 300, 200 ) );
    points.push_back( Point( 130, 240 ) );
    points.push_back( Point( 76, 150 ) );
    points.push_back( Point( 47, 76 ) );
    points.push_back( Point( 36, 40 ) );
    points.push_back( Point( 33, 35 ) );

    graham();

    for( int i = 0; i < result.size(); ++i ){
        cout << result[i];
    }
    
    return 0;
}


Free Pascal:

program Graham;

type
  TPoint = record
    x : extended;
    y : extended;
  end;


var
  points : array[1..10000] of TPoint;
  result : array[1..10000] of TPoint;
  top : Integer;
  points_num : Integer;
  i : Integer;


procedure Swap( var a, b : TPoint ); inline;
var
  temp : TPoint;
begin
  temp := a;
  a := b;
  b := temp;
end;


procedure Init; inline;
var
  i : Integer;
begin
  readln( points_num );
  for i := 1 to points_num do
  begin
    with points[i] do
    begin
      readln( x, y );
    end
  end;
  for i := 1 to points_num do
  begin
    if ( points[i].y < points[1].y ) or
       ( points[i].y = points[1].y ) and
       ( points[i].x < points[1].x ) then
    begin
      Swap( points[1], points[i] );
    end
  end;
end;


function CrossMultiply( p1, p2, p3 : TPoint ) : extended; inline;
begin
  exit( ( p1.x - p3.x ) * ( p2.y - p3.y ) - ( p2.x - p3.x ) * ( p1.y - p3.y ) );
end;


function Distance( p1, p2 : TPoint ) : extended; inline;
begin
  exit( sqrt( ( p1.x - p2.x ) * ( p1.x - p2.x ) + ( p1.y - p2.y ) * ( p1.y - p2.y ) ) );
end;


procedure Sort( x, y : longint ); inline;
var
  xx, yy : longint;
  mid, temp : TPoint;
begin
  xx := x;
  yy := y;
  mid := points[ ( xx + yy ) shr 1];
  repeat
    while ( CrossMultiply( points[xx], mid, points[1] ) > 0 ) or
          ( CrossMultiply( points[xx], mid, points[1] ) = 0 ) and
          ( Distance( points[xx], points[1] ) < Distance( mid, points[1] ) ) do
    begin
      Inc( xx );
    end;
    while ( CrossMultiply( points[yy], mid, points[1] ) < 0 ) or
          ( CrossMultiply( points[yy], mid, points[1] ) = 0 ) and
          ( Distance( points[yy], points[1] ) > Distance( mid, points[1] ) ) do
    begin
      Dec( yy );
    end;
    if xx <= yy then
    begin
      Swap( points[xx], points[yy] );
      Inc( xx );
      Dec( yy );
    end;
  until xx > yy;
  if yy > x then Sort( x, yy );
  if xx < y then Sort( xx, y );
end;


procedure Push( i : longint ); inline;
begin
  inc( top );
  result[top] := points[i];
end;


procedure Graham; inline;
var
  i : Integer;
begin
  Sort( 2, points_num );
  top := 0;
  Push( 1 );
  Push( 2 );
  for i := 3 to points_num do
  begin
    while ( top > 1 ) and
          ( CrossMultiply( points[i], result[top], result[top - 1] ) >= 0 ) do
    begin
      dec( top );
    end;
    push( i );
  end;
end;


begin
  Init;
  Graham;
  for i := 1 to top do
  begin
    writeln( result[i].x, result[i].y );
  end;
  readln;
end.

还差 Scheme, Ada,SML 版本的没写。。。。我是不是有强迫症。。。。

不对,还有 JS 动漫版的~

二维凸包 Graham 算法

标签:python   算法   pascal   

原文地址:http://blog.csdn.net/pandora_madara/article/details/39237623

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!