码迷,mamicode.com
首页 > 其他好文 > 详细

Regularized logistic regression

时间:2014-09-13 11:50:55      阅读:226      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   io   os   ar   strong   for   

要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟。例如本程序中个就用到了特征值的6次方来求解。

Data

To begin, load the files ‘ex5Logx.dat‘ and ex5Logy.dat‘ into your program. This dataset represents the training set of a logistic regression problem with two features. To avoid confusion later, we will refer to the two input features contained in ‘ex5Logx.dat‘ as bubuko.com,布布扣and bubuko.com,布布扣. So in the ‘ex5Logx.dat‘ file, the first column of numbers represents the feature bubuko.com,布布扣, which you will plot on the horizontal axis, and the second feature represents bubuko.com,布布扣, which you will plot on the vertical axis.

After loading the data, plot the points using different markers to distinguish between the two classifications. The commands in Matlab/Octave will be:

 

x = load(‘ex5Logx.dat‘); 
y = load(‘ex5Logy.dat‘);

figure

% Find the indices for the 2 classes
pos = find(y); neg = find(y == 0);

plot(x(pos, 1), x(pos, 2), ‘+‘)
hold on
plot(x(neg, 1), x(neg, 2), ‘o‘)

After plotting your image, it should look something like this:

bubuko.com,布布扣

Model

the hypothesis function is

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 bubuko.com,布布扣bubuko.com,布布扣

Let‘s look at the bubuko.com,布布扣 parameter in the sigmoid function bubuko.com,布布扣.

In this exercise, we will assign bubuko.com,布布扣 to be all monomials (meaning polynomial terms) of bubuko.com,布布扣 and bubuko.com,布布扣 up to the sixth power:

bubuko.com,布布扣

To clarify this notation: we have made a 28-feature vector bubuko.com,布布扣 where bubuko.com,布布扣

此时加入了规则项后的系统的损失函数为:

bubuko.com,布布扣

 

Newton’s method

Recall that the Newton‘s Method update rule is

bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣

1. bubuko.com,布布扣 is your feature vector, which is a 28x1 vector in this exercise.

2. bubuko.com,布布扣 is a 28x1 vector.

3. bubuko.com,布布扣 and bubuko.com,布布扣 are 28x28 matrices.

4. bubuko.com,布布扣 and bubuko.com,布布扣 are scalars.

5. The matrix following bubuko.com,布布扣 in the Hessian formula is a 28x28 diagonal matrix with a zero in the upper left and ones on every other diagonal entry.

 

After convergence, use your values of theta to find the decision boundary in the classification problem. The decision boundary is defined as the line where

bubuko.com,布布扣

 

Code

%载入数据
clc,clear,close all;
x = load(ex5Logx.dat);
y = load(ex5Logy.dat);

%画出数据的分布图
plot(x(find(y),1),x(find(y),2),o,MarkerFaceColor,b)
hold on;
plot(x(find(y==0),1),x(find(y==0),2),r+)
legend(y=1,y=0)

% Add polynomial features to x by 
% calling the feature mapping function
% provided in separate m-file
x = map_feature(x(:,1), x(:,2));  %投影到高维特征空间

[m, n] = size(x);

% Initialize fitting parameters
theta = zeros(n, 1);

% Define the sigmoid function
g = inline(1.0 ./ (1.0 + exp(-z))); 

% setup for Newtons method
MAX_ITR = 15;
J = zeros(MAX_ITR, 1);

% Lambda is the regularization parameter
lambda = 1;%lambda=0,1,10,修改这个地方,运行3次可以得到3种结果。

% Newtons Method
for i = 1:MAX_ITR
    % Calculate the hypothesis function
    z = x * theta;
    h = g(z);
    
    % Calculate J (for testing convergence) -- 损失函数
    J(i) =(1/m)*sum(-y.*log(h) - (1-y).*log(1-h))+ ...
    (lambda/(2*m))*norm(theta([2:end]))^2;
    
    % Calculate gradient and hessian.
    G = (lambda/m).*theta; G(1) = 0; % extra term for gradient
    L = (lambda/m).*eye(n); L(1) = 0;% extra term for Hessian
    grad = ((1/m).*x * (h-y)) + G;
    H = ((1/m).*x * diag(h) * diag(1-h) * x) + L;
    
    % Here is the actual update
    theta = theta - H\grad;
  
end

% Plot the results 
% We will evaluate theta*x over a 
% grid of features and plot the contour 
% where theta*x equals zero

% Here is the grid range
u = linspace(-1, 1.5, 200);
v = linspace(-1, 1.5, 200);

z = zeros(length(u), length(v));
% Evaluate z = theta*x over the grid
for i = 1:length(u)
    for j = 1:length(v)
        z(i,j) = map_feature(u(i), v(j))*theta;%这里绘制的并不是损失函数与迭代次数之间的曲线,而是线性变换后的值
    end
end
z = z; % important to transpose z before calling contour

% Plot z = 0
% Notice you need to specify the range [0, 0]
contour(u, v, z, [0, 0], LineWidth, 2)%在z上画出为0值时的界面,因为为0时刚好概率为0.5,符合要求
legend(y = 1, y = 0, Decision boundary)
title(sprintf(\\lambda = %g, lambda), FontSize, 14)


hold off

% Uncomment to plot J
% figure
% plot(0:MAX_ITR-1, J, o--, MarkerFaceColor, r, MarkerSize, 8)
% xlabel(Iteration); ylabel(J)

 

Result

bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣

Regularized logistic regression

标签:style   blog   http   color   io   os   ar   strong   for   

原文地址:http://www.cnblogs.com/sprint1989/p/3969545.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!