标签:pytorch htm blank code 计算 函数 pad oat float
黄色:重点
粉色:不懂
import torch import numpy as np np_data = np.arange(6).reshape((2, 3)) torch_data = torch.from_numpy(np_data) tensor2array = torch_data.numpy() print( ‘\nnumpy array:‘, np_data, # [[0 1 2], [3 4 5]] ‘\ntorch tensor:‘, torch_data, # 0 1 2 \n 3 4 5 [torch.LongTensor of size 2x3] ‘\ntensor to array:‘, tensor2array, # [[0 1 2], [3 4 5]] )
其实 torch 中 tensor 的运算和 numpy array 的如出一辙, 我们就以对比的形式来看. 如果想了解 torch 中其它更多有用的运算符, API就是你要去的地方.
# abs 绝对值计算 data = [-1, -2, 1, 2] tensor = torch.FloatTensor(data) # 转换成32位浮点 tensor print( ‘\nabs‘, ‘\nnumpy: ‘, np.abs(data), # [1 2 1 2] ‘\ntorch: ‘, torch.abs(tensor) # [1 2 1 2] ) # sin 三角函数 sin print( ‘\nsin‘, ‘\nnumpy: ‘, np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743] ‘\ntorch: ‘, torch.sin(tensor) # [-0.8415 -0.9093 0.8415 0.9093] ) # mean 均值 print( ‘\nmean‘, ‘\nnumpy: ‘, np.mean(data), # 0.0 ‘\ntorch: ‘, torch.mean(tensor) # 0.0 )
除了简单的计算, 矩阵运算才是神经网络中最重要的部分. 所以我们展示下矩阵的乘法. 注意一下包含了一个 numpy 中可行, 但是 torch 中不可行的方式.
# matrix multiplication 矩阵点乘 data = [[1,2], [3,4]] tensor = torch.FloatTensor(data) # 转换成32位浮点 tensor # correct method print( ‘\nmatrix multiplication (matmul)‘, ‘\nnumpy: ‘, np.matmul(data, data), # [[7, 10], [15, 22]] ‘\ntorch: ‘, torch.mm(tensor, tensor) # [[7, 10], [15, 22]] ) # !!!! 下面是错误的方法 !!!! data = np.array(data) print( ‘\nmatrix multiplication (dot)‘, ‘\nnumpy: ‘, data.dot(data), # [[7, 10], [15, 22]] 在numpy 中可行 ‘\ntorch: ‘, tensor.dot(tensor) # torch 会转换成 [1,2,3,4].dot([1,2,3,4) = 30.0 )
标签:pytorch htm blank code 计算 函数 pad oat float
原文地址:http://www.cnblogs.com/CATHY-MU/p/7800771.html