码迷,mamicode.com
首页 > 其他好文 > 详细

PTA 7-1 畅通工程之局部最小花费问题(35 分)

时间:2017-11-07 23:58:22      阅读:358      评论:0      收藏:0      [点我收藏+]

标签:计数   计算   编写   pos   fst   最小   efi   ret   [1]   

7-1 畅通工程之局部最小花费问题(35 分)

某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。

输入格式:

输入的第一行给出村庄数目N (1N100);随后的N(N?1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。

输出格式:

输出全省畅通需要的最低成本。

输入样例:

4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0

输出样例:

3
普里姆算法
#include<iostream>
#include<fstream>
using  namespace std;
#define INF 0x3f3f3f3f
const int maxn = 117;
int m[maxn][maxn];
int vis[maxn], low[maxn];
int n;
int prim()
{
    vis[1] = 1;
    int sum = 0;
    int pos, minn;
    pos = 1;
    for(int i = 1; i <= n; i++)
    {
        low[i] = m[pos][i];
    }
    for(int i = 1; i < n; i++)
    {
        minn = INF;
        for(int j = 1; j <= n; j++)
        {
            if(!vis[j] && minn > low[j])
            {
                minn = low[j];
                pos = j;
            }
        }
        sum += minn;
        vis[pos] = 1;
        for(int j = 1; j <= n; j++)
        {
            if(!vis[j] && low[j] > m[pos][j])
            {
                low[j] = m[pos][j];
            }
        }
    }
    return sum;
}

int main()
{
    scanf("%d",&n);
    int ms = n*(n-1)/2;
    int x,y,cost,tes;
    for(int i = 1; i <= n ;i++ )
        for(int j = 1; j <= n; j++)
        m[i][j] = INF;
    for(int i = 1; i <= ms ; i++)
    {
        cin>>x>>y>>cost>>tes;
        m[x][y] = m[y][x] = tes==1?0:cost;
    }
    cost = prim();
    cout<< cost << endl;
    return 0;
}

  

PTA 7-1 畅通工程之局部最小花费问题(35 分)

标签:计数   计算   编写   pos   fst   最小   efi   ret   [1]   

原文地址:http://www.cnblogs.com/masterchd/p/7801888.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!