题目大意:有一张无向图,描述的是兔子窝的位置和之间的边。现在狼来抓兔子了,兔子慌忙的从(1,1)逃走到(m,n)。每条边上都有能通过最多的兔子数量。狼不想让兔子逃走,每在一条边驻守一只狼就可以避免一个兔子通过。问最少多少狼可以让所有兔子都不能逃走。
思路:建图,按题目中的意思是去掉最小的边使得源到汇不连通,显然的最小割。
CODE:
#include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 7000000 #define INF 0x7f7f7f7f #define S 1 #define T (m * n) using namespace std; int m,n; int head[MAX],total = 1; int next[MAX],aim[MAX],flow[MAX]; int deep[MAX]; inline void Add(int x,int y,int f); inline bool BFS(); int Dinic(int x,int f); int main() { cin >> m >> n; for(int i = 1;i <= m; ++i) for(int x,j = 1;j <= n - 1; ++j) { scanf("%d",&x); Add((i - 1) * n + j,(i - 1) * n + j + 1,x); Add((i - 1) * n + j + 1,(i - 1) * n + j,x); } for(int i = 1;i <= m - 1; ++i) for(int x,j = 1;j <= n; ++j) { scanf("%d",&x); Add((i - 1) * n + j,i * n + j,x); Add(i * n + j,(i - 1) * n + j,x); } for(int i = 1;i <= m - 1; ++i) for(int x,j = 1;j <= n - 1; ++j) { scanf("%d",&x); Add((i - 1) * n + j,i * n + j + 1,x); Add(i * n + j + 1,(i - 1) * n + j,x); } int temp,max_flow = 0; while(BFS()) while(temp = Dinic(S,INF),temp) max_flow += temp; cout << max_flow; return 0; } inline void Add(int x,int y,int f) { next[++total] = head[x]; aim[total] = y; flow[total] = f; head[x] = total; } inline bool BFS() { static queue<int> q; while(!q.empty()) q.pop(); memset(deep,0,sizeof(deep)); q.push(S); deep[S] = 1; while(!q.empty()) { int x = q.front(); q.pop(); for(int i = head[x];i;i = next[i]) if(!deep[aim[i]] && flow[i]) { deep[aim[i]] = deep[x] + 1; q.push(aim[i]); if(aim[i] == T) return true; } } return false; } int Dinic(int x,int f) { int temp = f; if(x == T) return f; for(int i = head[x];i;i = next[i]) if(deep[aim[i]] == deep[x] + 1 && flow[i] && temp) { int away = Dinic(aim[i],min(flow[i],temp)); if(!away) deep[aim[i]] = 0; flow[i] -= away; flow[i^1] += away; temp -= away; } return f - temp; }
BZOJ 1001 Beijing 2006 狼抓兔子 最小割
原文地址:http://blog.csdn.net/jiangyuze831/article/details/39251789