码迷,mamicode.com
首页 > 其他好文 > 详细

TensorFlow基础笔记(9) Tensorboard可视化显示

时间:2017-11-10 16:55:06      阅读:232      评论:0      收藏:0      [点我收藏+]

标签:链接   on()   numpy   wax   function   flow   efi   net   network   

 参考: http://blog.csdn.net/l18930738887/article/details/55000008

import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
    # add one more layer and return the output of this layer
    layer_name = layer%s % n_layer
    with tf.name_scope(layer_name):
        with tf.name_scope(weights):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name=W)
            tf.summary.histogram(layer_name + /weights, Weights)
        with tf.name_scope(biases):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name=b)
            tf.summary.histogram(layer_name + /biases, biases)
        with tf.name_scope(Wx_plus_b):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        tf.summary.histogram(layer_name + /outputs, outputs)
    return outputs
# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# define placeholder for inputs to network
with tf.name_scope(inputs):
    xs = tf.placeholder(tf.float32, [None, 1],name=input_x)
    ys = tf.placeholder(tf.float32, [None, 1],name=input_y)

# add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None)


# the error between prediciton and real data
with tf.name_scope(loss):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))
    tf.summary.scalar(loss, loss)
with tf.name_scope(train):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()
merged = tf.summary.merge_all()
# save the logs
writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(1000):
    # training
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        # to see the step improvement
        result = sess.run(merged,
                          feed_dict={xs: x_data, ys: y_data})
        writer.add_summary(result, i)

 

到运行python的所在目录下,打一下命令:

$ tensorboard --logdir="logs/"

再在网页中输入链接:127.0.1.1:6006 即可获得展示: 推荐使用friefox浏览器,我电脑上chrom浏览器打不开

技术分享

技术分享

技术分享

 

TensorFlow基础笔记(9) Tensorboard可视化显示

标签:链接   on()   numpy   wax   function   flow   efi   net   network   

原文地址:http://www.cnblogs.com/adong7639/p/7815083.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!