题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4998
1 3 0 0 1 1 1 1 2 2 1
1.8088715944 0.1911284056 3.0000000000
解析系转载:
平面上有一个二维坐标轴上,进行n次操作,把坐标轴绕着(x,y) (这个坐标总是初始坐标轴的坐标) 逆时针转p弧度。
最后的结果相当于进行一次操作,即绕着(X, Y) 逆时针旋转了P弧度。求 X,Y,P,题目保证总有解.
其实可以发现,最后的P是n次的pi的和,因为这和绕什么点旋转无关。(画一个图理解一下吧)
对任意点(x,y),绕一个坐标点(rx0,ry0)逆时针旋转a角度后的新的坐标设为(x0, y0),有公式:
x0= (x - rx0)*cos(a) - (y - ry0)*sin(a) + rx0 ;
y0= (x - rx0)*sin(a) + (y - ry0)*cos(a) + ry0 ;
可以假设两个点a, b(两个足够了), 任意指定其坐标, 可以算出旋转后的对应点a‘, b‘,
前面已经求出了P, 现在只要求出旋转中心A即可, 利用 dis(A, a) == dis(A, a‘) 和 dis(A, b) == dis(A, b‘) 直接列方程可以求出A的坐标!
代码如下:
#include <cstdio> #include <cmath> #define pi acos(-1.0) int main() { int t; int n; double x1, y1, x2, y2, r; double tx1, ty1, tx2, ty2; double rx0, ry0, a; scanf("%d", &t); while(t--) { scanf("%d", &n); x1 = y1 = 0; x2 = y2 = 1; r = 0; for(int i = 1; i <= n; i++) { scanf("%lf%lf%lf", &rx0, &ry0, &a); r += a; if(r >= 2*pi) r -= 2*pi; tx1 = (x1 - rx0) * cos(a) - (y1 - ry0) * sin(a) + rx0; ty1 = (x1 - rx0) * sin(a) + (y1 - ry0) * cos(a) + ry0; tx2 = (x2 - rx0) * cos(a) - (y2 - ry0) * sin(a) + rx0; ty2 = (x2 - rx0) * sin(a) + (y2 - ry0) * cos(a) + ry0; x1 = tx1, y1 = ty1; x2 = tx2, y2 = ty2; } double t1 = (x1*x1+y1*y1)*(2*y2-2)-2*y1*(x2*x2+y2*y2)+4*y1; double t2 = 4*y1-4*y1*x2+4*x1*y2-4*x1; double x = t1/t2; double t3 = (x1*x1+y1*y1)-2*x*x1; double t4 = 2*y1; double y = t3/t4; printf("%lf %lf %lf\n",x,y,r); } return 0; }
我们设a的坐标为(0, 0),b的坐标为(1, 1);
A的坐标为(x, y);
①:dis(A, a) == dis(A, a‘) :(x - x1)2 + (y - y1)2 = (x - 0)2 + (y - 0)2;
②:dis(A, b) == dis(A, b‘) :(x - x2)2 + (y - y2)2 = (x - 1)2 + (y - 1)2;
联立①②方程解出A(x, y)的坐标即可!
原文地址:http://blog.csdn.net/u012860063/article/details/39256111