码迷,mamicode.com
首页 > 其他好文 > 详细

[LintCode] Minimum Path Sum

时间:2017-11-12 12:23:38      阅读:135      评论:0      收藏:0      [点我收藏+]

标签:tree   rom   tom   +=   mic   code   void   pat   can   

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

You can only move either down or right at any point in time.

 

Solution 1. Recursion, DFS 

 1 public class Solution {
 2     private int minPath = Integer.MAX_VALUE;
 3     public int minPathSum(int[][] grid) {
 4         if(grid == null || grid.length == 0 || grid[0].length == 0){
 5             return -1;
 6         }
 7         traverse(grid, 0, 0, 0);
 8         return minPath;
 9     }
10     private void traverse(int[][] grid, int x, int y, int sum){
11         int m = grid.length, n = grid[0].length;
12         if(x >= m || y >= n) {
13             return;
14         }
15         sum += grid[x][y];
16         if(x == m - 1 && y == n - 1){
17             if(sum < minPath){
18                 minPath = sum;
19             }
20             return;
21         }
22         traverse(grid, x + 1, y, sum);  
23         traverse(grid, x, y + 1, sum); 
24     }
25 }

 

Solution 2. DFS, divide and conquer + memoization

 1 public class Solution {
 2     private int[][] hash;
 3     public int minPathSum(int[][] grid) {
 4         if(grid == null || grid.length == 0 || grid[0].length == 0){
 5             return -1;
 6         }
 7         hash = new int[grid.length][grid[0].length];
 8         for(int i = 0; i < hash.length; i++){
 9             for(int j = 0; j < hash[0].length; j++){
10                 hash[i][j] = Integer.MAX_VALUE;
11             }
12         }
13         return divideConquer(grid, 0, 0);
14     }
15     private int divideConquer(int[][] grid, int x, int y){
16         int m = grid.length, n = grid[0].length;
17         if(x == m - 1 && y == n - 1){
18             return grid[x][y];
19         }
20         if(x >= m || y >= n){
21             return Integer.MAX_VALUE;
22         }
23         if(hash[x][y] != Integer.MAX_VALUE){
24             return hash[x][y];
25         }
26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
27         return hash[x][y];
28     }
29 }

 

Solution 3.  Dynamic Programming 

State: f[i][j],  the min distance from (0, 0) to (i, j)

Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

Answer: f[m - 1][n - 1]

 

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         if(grid == null || grid.length == 0 || grid[0].length == 0){
 4             return -1;
 5         }
 6         int rowLen = grid.length, colLen = grid[0].length;
 7         int[][] f = new int[rowLen][colLen];
 8         f[0][0] = grid[0][0];
 9         for(int row = 1; row < rowLen; row++){
10             f[row][0] = grid[row][0] + f[row - 1][0]; 
11         }
12         for(int col = 1; col < colLen; col++){
13             f[0][col] = grid[0][col] + f[0][col - 1];
14         }
15         for(int i = 1; i < rowLen; i++){
16             for(int j = 1; j < colLen; j++){
17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
18             }
19         }
20         return f[rowLen - 1][colLen - 1];
21     }
22 }

 

Solution 4. DP with space optimization

 

 1 public class Solution {
 2     public int minPathSum(int[][] grid) {
 3         if(grid == null || grid.length == 0 || grid[0].length == 0){
 4             return -1;
 5         }
 6         int rowLen = grid.length, colLen = grid[0].length;
 7         int[][] T = new int[2][colLen];
 8         T[0][0] = grid[0][0];
 9         for(int j = 1; j < colLen; j++){
10             T[0][j] = T[0][j - 1] + grid[0][j];
11         }
12         for(int i = 1; i < rowLen; i++){
13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
14             for(int j = 1; j < colLen; j++){
15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
16             }
17         }
18         return T[(rowLen - 1) % 2][colLen - 1];
19     }
20 }

 

 

 

Related Problems

Triangle 

Binary Tree Maximum Path Sum 

[LintCode] Minimum Path Sum

标签:tree   rom   tom   +=   mic   code   void   pat   can   

原文地址:http://www.cnblogs.com/lz87/p/7498455.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!