标签:str for ble stack i++ algorithm ack clu pre
[原题] (http://poj.org/problem?id=2186)
这是一个强连通分量板子题。
a thinks b is popular 即为a到b有一条边,要求被所有牛popular的牛的个数。
所求为对图进行强连通分量缩点后,没有出度的强连通分量里的点数(这样的强连通分量只能有一个)。
#include<cstdio>
#include<algorithm>
#include<stack>
#define N 10010
#define M 50010
using namespace std;
int n,m,head[N],dfn[N],low[N],cnt=1,t,sum,bel[N],num[N],out[N],ans;
bool instk[N];
stack <int> stk;
struct hhh
{
int to,next;
}edge[M];
int read()
{
int ans=0,fu=1;
char j=getchar();
for (;(j<‘0‘ || j>‘9‘) && j!=‘-‘;j=getchar()) ;
if (j==‘-‘) fu=-1,j=getchar();
for (;j>=‘0‘ && j<=‘9‘;j=getchar()) ans*=10,ans+=j-‘0‘;
return ans*fu;
}
void add(int u,int v)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void Tarjan(int x)
{
dfn[x]=low[x]=++t;
stk.push(x);
instk[x]=1;
int v;
for (int i=head[x];i;i=edge[i].next)
{
v=edge[i].to;
if (!dfn[v])
{
Tarjan(v);
low[x]=min(low[x],low[v]);
}
else if (instk[v]) low[x]=min(low[x],dfn[v]);
}
if (dfn[x]==low[x])
{
sum++;
do
{
v=stk.top();
stk.pop();
instk[v]=0;
bel[v]=sum;
num[sum]++;
}while(v!=x);
}
}
int main()
{
n=read();
m=read();
for (int i=1,a,b;i<=m;i++)
{
a=read();
b=read();
add(a,b);
}
for (int i=1;i<=n;i++)
if (!dfn[i]) Tarjan(i);
for (int i=1;i<=n;i++)
for (int j=head[i],v;j;j=edge[j].next)
{
v=edge[j].to;
if (bel[i]!=bel[v]) out[bel[i]]++;
}
for (int i=1;i<=sum;i++)
{
if (!out[i] && ans)
{
ans=0;
break;
}
else if (!out[i]) ans=num[i];
}
printf("%d",ans);
return 0;
}
标签:str for ble stack i++ algorithm ack clu pre
原文地址:http://www.cnblogs.com/mrha/p/7840544.html