标签:des blog http io os ar for 数据 art
原文:http://blog.csdn.net/u010696366/article/details/8941938
Registration:不断调整,把不同角度的3D点数据整合到一个完整的模型中。
它的目的在于在一个全局坐标系下找到不同视角的定位与定向(两个视角交叉部分重叠完好为最优)。这就是KinectFusion论文中所提到的ICP( Iterative Closest Point )算法。给定输入数据集,首先做一个估计,然后通过旋转和平移变换一个数据集,找到一个正确的点集对应方式完美匹配。下面几页PPT是ICP很好的解释。
PCL提供了很多算法,多组点集对应估计,剔除坏对应,稳健的变换估计等。下面详细解释。
两个点集的对应,输出通常是一个4×4刚性变换矩阵:代表旋转和平移,它应用于源数据集,结果是完全与目标数据集匹配。下图是“双对应”算法中一次迭代的步骤:
对两个数据源a,b匹配运算步骤如下:
关键点是场景中有特殊性质的部分,一本书的边角,书上印的字母P都可以称作关键点。PCL中提供的关键点算法如NARF,SIFT,FAST。你可以选用所有点或者它的子集作为关键点,但需要考虑的是按毎帧有300k点来算,就有300k^2种对应组合。
根据选取的关键点生成特征描述。把有用信息集合在向量里,进行比较。方法有:NARF, FPFH, BRIEF 或SIFT.
已知从两个不同的扫描图中抽取的特征向量,找出相关特征,进而找出数据中重叠的部分。根据特征的类型,可以选用不同的方法。
点匹配(point matching, 用xyz坐标作为特征),无论数据有无重组,都有如下方法:
特征匹配(feature matching, 用特征做为特征),只有下面两种方法:
除了搜索法,还有两种著名对应估计:
剔除错误估计,可用 RANSAC 算法,或减少数量,只用一部分对应关系。有一种特殊的一到多对应,即模型中一个点对应源中的一堆点。这种情况可以用最短路径对应或检查附近的其他匹配过滤掉。
标签:des blog http io os ar for 数据 art
原文地址:http://www.cnblogs.com/zhizhan/p/3971300.html