标签:blank lis contains exp split null contain unity minimum
problem1 link
首先每$n*m$一定是一个循环,所以只需要考虑时间$[0,n*m-1]$即可。这个期间一共出现了$n$个,第i个的出现时间为$m*i$,离开的时间为$\left \lceil \frac{mi}{n} \right \rceil*n$,所有答案为:
ans=$\frac{\sum_{i=0}^{n-1}(\left \lceil \frac{mi}{n} \right \rceil*n-mi)}{n}$
=$\frac{n\sum_{i=0}^{n-1}\left \lceil \frac{mi}{n} \right \rceil-\sum_{i=0}^{n-1}mi}{n}$
=$\sum_{i=0}^{n-1}\left \lceil \frac{mi}{n} \right \rceil-\frac{(n-1)m}{2}$
设$A=\sum_{i=0}^{n-1}\left \lceil \frac{mi}{n} \right \rceil=\sum_{i=0}^{n-1}\left \lfloor \frac{mi}{n} \right \rfloor+n-X$
其中$X$是那些$mi$正好是$n$的倍数因此不需要加1的个数。
现在的问题是计算$B=\sum_{i=0}^{n-1}\left \lfloor \frac{mi}{n} \right \rfloor$
它等于$\sum_{i=0}^{n-1}\left \lfloor \frac{mi}{n} \right \rfloor=\frac{(n-1)(m-1)}{2}-\frac{gcd(n,m)-1}{2}$
这个的证明在具体数学中文版第二版第77页到第78页。
problem2 link
首先将所有的前缀编号,预处理转换表$T[id][k]$表示前缀id在输入$k$时转换到的状态,其中$k$表示数字以及星号。
然后设$f[i][id]$表示当前“fix”部分为$word$的前$i$个,且"unfix"部分的标号为id的最小操作次数。然后进行dp即可。
problem3 link
首先,在$n*m$个一个pattern中(n为高度,m为宽度),位置$(x_{1},y_{1})$到位置$(x_{2},y_{2})$的最短路径可能会经过其他重复的pattern。可以证明,如果经过该patern上面的pattern,最多只需要考虑$\left \lceil \frac{m}{2} \right \rceil^{2}$个
假设每次进入上面一个pattern是进入是第$i$列,出来时是第$j$列,$i \ne j$。那么不会出现两个pattern进入出来时的$i,j$一模一样,否则可以省略中间的一些pattern。这样考虑的话不同的$i,j$对有$\frac{m(m-1)}{2}$个,所以至多向上考虑这么多即可。
进一步考虑。将pattern的最后一行按照连续的空列分成若干组,那么很明显最多有$\left \lceil \frac{m}{2} \right \rceil$组(每隔一个空列有一个障碍格子)。跟上面同样的考虑方法,进入的组和出来的组不会有两个pattern是完全一样的,否则可以省略(因为一个组是联通的)。所以向上最多需要考虑$\left \lceil \frac{m}{2} \right \rceil^{2}$个pattern即可。
这样就可以处理出一个$m*m$的矩阵$A[i][j]$,表示从pattern的第一行的第 $i$ 列格子到达下一个pattern的第一行的第$j$列格子的最短路径。
这样的话,对于那么$r_{1},r_{2}$中间有很多pattern的情况,可以进行类似矩阵幂的优化。
code for problem1
import java.util.*; import java.math.*; import static java.lang.Math.*; public class Starport { public double getExpectedTime(int N, int M) { long t = (long)(N - 1) * M; long r = upper(N, M) - t / 2; if (t % 2 == 0) { return r; } return r - 0.5; } long upper(long n, long d) { if (n == 1) { return 0; } long nn = n / gcd(n, d); long p = (n - 1) / nn + 1; return lower(n, d) + n - p; } long gcd(long x, long y) { if (y == 0) { return x; } return gcd(y, x % y); } long lower(long n, long m) { return ((n - 1) * (m - 1) + gcd(n, m) - 1) / 2; } }
code for problem2
import java.util.*; import java.math.*; import static java.lang.Math.*; public class QuickT9 { static int[] D = new int[]{3, 3, 3, 3, 3, 4, 3, 4}; int prefixIndex = 0; Map<String, Integer> map = new HashMap<>(); //串对应编号 Map<Integer, String> mapRev = new HashMap<>(); //编号对应串 Map<String, List<String>> mapForNext = new HashMap<>(); //数字串对应的串 Map<String, String> mapToDigit = new HashMap<>(); //串对应的数字串 List<String> allWords = new ArrayList<>(); String word; int[][] g = null; int[][] f = null; public int minimumPressings(String[] t9, String word) { init(t9); this.word = word; final int n = word.length(); f = new int[n + 1][prefixIndex]; for (int i = 0; i <= n; ++ i) { Arrays.fill(f[i], -1); } f[0][0] = 0; for (int i = 0; i < n; ++ i) { bfs(i); } return f[n][0]; } Queue<Integer> queue = new LinkedList<>(); boolean[] inq = null; void bfs(int len) { if (inq == null) { inq = new boolean[prefixIndex + 1]; } if (f[len][0] != -1) { queue.offer(0); } while (!queue.isEmpty()) { int st = queue.poll(); inq[st] = false; for (int i = 0; i < 11; ++ i) { if (i < 9) { int nxt = g[st][i]; int c = f[len][st] + 1; if (f[len][nxt] == -1 || f[len][nxt] > c) { f[len][nxt] = c; if (!inq[nxt]) { queue.offer(nxt); inq[nxt] = true; } } } else { int[] result = check(st, len, i == 10); int t = result[0]; int c = result[1]; if (t > 0) { if (f[len + t][0] == -1 || f[len + t][0] > f[len][st] + 1 + c) { f[len + t][0] = f[len][st] + 1 + c; } } } } } } void init(String[] all) { for (int i = 0; i < all.length; ++ i) { String[] t= all[i].split("\\W+"); for (String p : t) { String x = p.trim(); if (x.length() > 0) { allWords.add(x); } } } addPrefix("", ""); for (int i = 0; i < allWords.size(); ++ i) { String originStr = ""; String digitStr = ""; String s = allWords.get(i); for (int j = 0; j < s.length(); ++ j) { digitStr += getDigit(s.charAt(j)); originStr += s.charAt(j); addPrefix(originStr, digitStr); } } for (String s: mapForNext.keySet()) { Collections.sort(mapForNext.get(s)); } g = new int[prefixIndex][9]; for (int i = 0; i < prefixIndex; ++ i) { for (int j = 0; j < 9; ++ j) { if (j == 0) { g[i][j] = getNext(i); } else { g[i][j] = getAddDigit(i, j + 1); } } } } int[] check(int id, int preIndex, boolean isStar) { if (id == 0) { return new int[]{0,0}; } String s = mapRev.get(id); String sub = word.substring(preIndex); if (isStar) { s = s.substring(0, s.length() - 1); } int comPre = 0; for (int i = 0; i < sub.length() && i < s.length(); ++ i) { if (sub.charAt(i) == s.charAt(i)) { ++comPre; } else { break; } } return new int[]{comPre, s.length() - comPre}; } int getNext(int id) { if (id == 0) { return 0; } String s = mapRev.get(id); String digitStr = mapToDigit.get(s); List<String> list = mapForNext.get(digitStr); int index = list.indexOf(s); String nextOriginStr = list.get((index + 1) % list.size()); return map.get(nextOriginStr); } int getAddDigit(int id, int d) { String s = mapRev.get(id); String digitStr0 = mapToDigit.get(s); String digitStr1 = digitStr0 + (char)(‘0‘ + d); if (!mapForNext.containsKey(digitStr1)) { return id; } List<String> list = mapForNext.get(digitStr1); return map.get(list.get(0)); } void addPrefix(String originStr, String digitStr) { if (!map.containsKey(originStr)) { map.put(originStr, prefixIndex); mapRev.put(prefixIndex, originStr); ++ prefixIndex; } if (!mapForNext.containsKey(digitStr)) { mapForNext.put(digitStr, new ArrayList<>()); } if (!mapForNext.get(digitStr).contains(originStr)) { mapForNext.get(digitStr).add(originStr); } mapToDigit.put(originStr, digitStr); } static char getDigit(char c) { int t = c - ‘a‘ + 1; for (int i = 0; i < D.length; ++ i) { if (t > D[i]) { t -= D[i]; } else { return (char)(‘2‘ + i); } } return 0; } }
code for problem3
import java.util.*; public class InfiniteLab { final static int[] dx = {0, 0, 1, -1}; final static int[] dy = {1, -1, 0, 0}; final static int MAX_EXTENDED = 100; int n, m; String[] map; int[][] T; int[][][][] d; public long getDistance(String[] map, long r1, int c1, long r2, int c2) { if (r1 > r2) { return getDistance(map, r2, c2, r1, c1); } if (r1 < 0 || r1 >= map.length) { long det = r2 - r1; long b = (Math.abs(r1) / map.length + 1) * map.length; r1 = (r1 + b) % map.length; return getDistance(map, r1, c1 , r1 + det, c2); } this.map = map; n = map.length; m = map[0].length(); T = new int[n][2]; for (int i = 0; i < n; ++ i) { T[i][0] = T[i][1] = -1; for (int j = 0; j < m; ++ j) { if (map[i].charAt(j) == ‘T‘) { if (T[i][0] == -1) { T[i][0] = j; } else { T[i][1] = j; } } } } d = new int[m][n][m][n + 1]; cal(); if (r2 <= n) { int t = d[c1][(int)r1][c2][(int)r2]; if (t == Integer.MAX_VALUE) { t = -1; } return t; } long[][] a = new long[m][m]; long[][] b = new long[m][m]; for (int i = 0; i < m; ++ i) { for (int j = 0; j < m; ++ j) { a[i][j] = -1; if (d[i][0][j][n] != Integer.MAX_VALUE) { a[i][j] = d[i][0][j][n]; } if (i == j) { b[i][j] = 0; } else { b[i][j] = -1; } } } long p = r2 / n - r1 / n - 1; while (p > 0) { if ((p & 1) == 1) { b = multipy(b, a); } a = multipy(a, a); p >>= 1; } long result = -1; for (int i = 0; i < m; ++ i) { for (int j = 0; j < m; ++ j) { if (d[c1][(int)r1][i][n] != Integer.MAX_VALUE && b[i][j] != -1 && d[j][0][c2][(int)(r2 % n)] != Integer.MAX_VALUE) { long w = d[c1][(int)r1][i][n] + b[i][j] + d[j][0][c2][(int)(r2 % n)]; if (result == -1 || result > w) { result = w; } } } } return result; } long[][] multipy(long[][] A, long[][] B) { long[][] result = new long[m][m]; for (int i = 0; i < m; ++ i) { for (int j = 0; j < m; ++ j) { result[i][j] = -1; for (int k = 0; k < m; ++ k) { if (A[i][k] != -1 && B[k][j] != -1) { long t = A[i][k] + B[k][j]; if (result[i][j] == -1 || result[i][j] > t) { result[i][j] = t; } } } } } return result; } int trans(int x, int y) { x %= n; if (map[x].charAt(y) == ‘T‘) { return T[x][0] + T[x][1] - y; } return -1; } boolean empty(int x, int y) { return map[x % n].charAt(y) != ‘#‘; } void cal() { final int N = (2 * MAX_EXTENDED + 1) * n; int[][] f = new int[N][m]; Queue<Integer> queue = new LinkedList<>(); for (int sx = 0; sx < n; ++ sx) { for (int sy = 0; sy < m ; ++ sy) { final int startX =sx + MAX_EXTENDED * n; final int startY = sy; while (!queue.isEmpty()) { queue.poll(); } for (int i = 0; i < N; ++ i) { Arrays.fill(f[i], Integer.MAX_VALUE); } f[startX][startY] = 0; queue.offer(startX * 100 + startY); while (!queue.isEmpty()) { int x = queue.peek() / 100; int y = queue.poll() % 100; int nxtCost = f[x][y] + 1; for (int i = 0; i < 4; ++ i) { int xx = x + dx[i]; int yy = y + dy[i]; if (xx >= 0 && xx < N && yy >= 0 && yy < m && empty(xx, yy) && f[xx][yy] > nxtCost) { f[xx][yy] = nxtCost; queue.offer(xx * 100 + yy); } } if (trans(x, y) != -1) { int y1 = trans(x, y); if (f[x][y1] > nxtCost) { f[x][y1] = nxtCost; queue.offer(x * 100 + y1); } } } for (int i = 0; i <= n; ++ i) { for (int j = 0; j < m; ++ j) { d[sy][sx][j][i] = f[i + MAX_EXTENDED * n][j]; } } } } } }
标签:blank lis contains exp split null contain unity minimum
原文地址:http://www.cnblogs.com/jianglangcaijin/p/7856365.html