标签:undefined 能力 red date 索引 示例 int() bsp html
参考学习资料:
Python、NumPy和SciPy介绍:http://cs231n.github.io/python-numpy-tutorial
NumPy和SciPy快速入门:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
Python的数据分析: numpy和pandas入门:http://mp.weixin.qq.com/s/2GxvBC5WWRt8eT1JnVqx1w
Numpy:提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于多维数组(矩阵)处理的库。用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多。本身是由C语言开发,是个很基础的扩展,Python其余的科学计算扩展大部分都是以此为基础。
- 高性能科学计算和数据分析的基础包
- ndarray,多维数组(矩阵),具有矢量运算能力,快速、节省空间
- 矩阵运算,无需循环,可完成类似Matlab中的矢量运算
- 线性代数、随机数生成
import numpy as np
NumPy数组是一个多维的数组对象(矩阵),称为ndarray,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点。
注意:ndarray的下标从0开始,且数组里的所有元素必须是相同类型
ndarray的随机创建
通过随机抽样 (numpy.random) 生成随机数据。
# 导入numpy,别名np
import numpy as np
# 生成指定维度大小(3行4列)的随机多维浮点型数据(二维),rand固定区间0.0 ~ 1.0
arr = np.random.rand(3, 4)
print(arr)
print(type(arr))
# 生成指定维度大小(3行4列)的随机多维整型数据(二维),randint()可以指定区间(-1, 5)
arr = np.random.randint(-1, 5, size = (3, 4)) # ‘size=‘可省略
print(arr)
print(type(arr))
# 生成指定维度大小(3行4列)的随机多维浮点型数据(二维),uniform()可以指定区间(-1, 5)
arr = np.random.uniform(-1, 5, size = (3, 4)) # ‘size=‘可省略
print(arr)
print(type(arr))
print(‘维度个数: ‘, arr.ndim)
print(‘维度大小: ‘, arr.shape)
print(‘数据类型: ‘, arr.dtype)
[[ 0.09371338 0.06273976 0.22748452 0.49557778]
[ 0.30840042 0.35659161 0.54995724 0.018144 ]
[ 0.94551493 0.70916088 0.58877255 0.90435672]]
<class ‘numpy.ndarray‘>
[[ 1 3 0 1]
[ 1 4 4 3]
[ 2 0 -1 -1]]
<class ‘numpy.ndarray‘>
[[ 2.25275308 1.67484038 -0.03161878 -0.44635706]
[ 1.35459097 1.66294159 2.47419548 -0.51144655]
[ 1.43987571 4.71505054 4.33634358 2.48202309]]
<class ‘numpy.ndarray‘>
维度个数: 2
维度大小: (3, 4)
数据类型: float64
1. np.array(collection)
collection 为 序列型对象(list)、嵌套序列对象(list of list)。
# list序列转换为 ndarray
lis = range(10)
arr = np.array(lis)
print(arr) # ndarray数据
print(arr.ndim) # 维度个数
print(arr.shape) # 维度大小
# list of list嵌套序列转换为ndarray
lis_lis = [range(10), range(10)]
arr = np.array(lis_lis)
print(arr) # ndarray数据
print(arr.ndim) # 维度个数
print(arr.shape) # 维度大小
# list序列转换为 ndarray
[0 1 2 3 4 5 6 7 8 9]
1
(10,)
# list of list嵌套序列转换为 ndarray
[[0 1 2 3 4 5 6 7 8 9]
[0 1 2 3 4 5 6 7 8 9]]
2
(2, 10)
2. np.zeros()
指定大小的全0数组。注意:第一个参数是元组,用来指定大小,如(3, 4)。
3. np.ones()
指定大小的全1数组。注意:第一个参数是元组,用来指定大小,如(3, 4)。
4. np.empty()
初始化数组,不是总是返回全0,有时返回的是未初始的随机值(内存里的随机值)。
# np.zeros
zeros_arr = np.zeros((3, 4))
# np.ones
ones_arr = np.ones((2, 3))
# np.empty
empty_arr = np.empty((3, 3))
# np.empty 指定数据类型
empty_int_arr = np.empty((3, 3), int)
print(‘------zeros_arr-------‘)
print(zeros_arr)
print(‘\n------ones_arr-------‘)
print(ones_arr)
print(‘\n------empty_arr-------‘)
print(empty_arr)
print(‘\n------empty_int_arr-------‘)
print(empty_int_arr)
------zeros_arr-------
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
------ones_arr-------
[[ 1. 1. 1.]
[ 1. 1. 1.]]
------empty_arr-------
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0. 0.]]
------empty_int_arr-------
[[0 0 0]
[0 0 0]
[0 0 0]]
5. np.arange() 和 reshape()
arange() 类似 python 的 range() ,创建一个一维 ndarray 数组。
reshape() 将 重新调整数组的维数。
# np.arange()
arr = np.arange(15) # 15个元素的 一维数组
print(arr)
print(arr.reshape(3, 5)) # 3x5个元素的 二维数组
print(arr.reshape(1, 3, 5)) # 1x3x5个元素的 三维数组
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]]
6. np.arange() 和 random.shuffle()
random.shuffle() 将打乱数组序列(类似于洗牌)。
arr = np.arange(15)
print(arr)
np.random.shuffle(arr)
print(arr)
print(arr.reshape(3,5))
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
[ 5 8 1 7 4 0 12 9 11 2 13 14 10 3 6]
[[ 5 8 1 7 4]
[ 0 12 9 11 2]
[13 14 10 3 6]]
1. dtype参数
指定数组的数据类型,类型名+位数,如float64, int32
2.astype方法
转换数组的数据类型
# 初始化3行4列数组,数据类型为float64
zeros_float_arr = np.zeros((3, 4), dtype=np.float64)
print(zeros_float_arr)
print(zeros_float_arr.dtype)
# astype转换数据类型,将已有的数组的数据类型转换为int32
zeros_int_arr = zeros_float_arr.astype(np.int32)
print(zeros_int_arr)
print(zeros_int_arr.dtype)
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
float64
[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
int32
数组是编程中的概念,矩阵、矢量是数学概念。
在计算机编程中,矩阵可以用数组形式定义,矢量可以用结构定义!
1. 矢量运算:相同大小的数组间运算应用在元素上
# 矢量与矢量运算
arr = np.array([[1, 2, 3],
[4, 5, 6]])
print("元素相乘:")
print(arr * arr)
print("矩阵相加:")
print(arr + arr)
元素相乘:
[[ 1 4 9]
[16 25 36]]
矩阵相加:
[[ 2 4 6]
[ 8 10 12]]
2. 矢量和标量运算:"广播" - 将标量"广播"到各个元素
# 矢量与标量运算
print(1. / arr)
print(2. * arr)
[[ 1. 0.5 0.33333333]
[ 0.25 0.2 0.16666667]]
[[ 2. 4. 6.]
[ 8. 10. 12.]]
1. 一维数组的索引与切片
与Python的列表索引功能相似
# 一维数组
arr1 = np.arange(10)
print(arr1)
print(arr1[2:5])
[0 1 2 3 4 5 6 7 8 9]
[2 3 4]
2. 多维数组的索引与切片:
arr[r1:r2, c1:c2]
arr[1,1] 等价 arr[1][1]
[:] 代表某个维度的数据
# 多维数组
arr2 = np.arange(12).reshape(3,4)
print(arr2)
print(arr2[1])
print(arr2[0:2, 2:])
print(arr2[:, 1:3])
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[4 5 6 7]
[[2 3]
[6 7]]
[[ 1 2]
[ 5 6]
[ 9 10]]
3. 条件索引
布尔值多维数组:arr[condition],condition也可以是多个条件组合。
注意,多个条件组合要使用 & | 连接,而不是Python的 and or。
# 条件索引
# 找出 data_arr 中 2005年后的数据
data_arr = np.random.rand(3,3)
print(data_arr)
year_arr = np.array([[2000, 2001, 2000],
[2005, 2002, 2009],
[2001, 2003, 2010]])
is_year_after_2005 = year_arr >= 2005
print(is_year_after_2005, is_year_after_2005.dtype)
filtered_arr = data_arr[is_year_after_2005]
print(filtered_arr)
#filtered_arr = data_arr[year_arr >= 2005]
#print(filtered_arr)
# 多个条件
filtered_arr = data_arr[(year_arr <= 2005) & (year_arr % 2 == 0)]
print(filtered_arr)
[[ 0.53514038 0.93893429 0.1087513 ]
[ 0.32076215 0.39820313 0.89765765]
[ 0.6572177 0.71284822 0.15108756]]
[[False False False]
[ True False True]
[False False True]] bool
[ 0.32076215 0.89765765 0.15108756]
#[ 0.32076215 0.89765765 0.15108756]
[ 0.53514038 0.1087513 0.39820313]
二维数组直接使用转换函数:transpose()
高维数组转换要指定维度编号参数 (0, 1, 2, …),注意参数是元组
arr = np.random.rand(2,3) # 2x3 数组
print(arr)
print(arr.transpose()) # 转换为 3x2 数组
arr3d = np.random.rand(2,3,4) # 2x3x4 数组,2对应0,3对应1,4对应3
print(arr3d)
print(arr3d.transpose((1,0,2))) # 根据维度编号,转为为 3x2x4 数组
# 二维数组转换
# 转换前:
[[ 0.50020075 0.88897914 0.18656499]
[ 0.32765696 0.94564495 0.16549632]]
# 转换后:
[[ 0.50020075 0.32765696]
[ 0.88897914 0.94564495]
[ 0.18656499 0.16549632]]
# 高维数组转换
# 转换前:
[[[ 0.91281153 0.61213743 0.16214062 0.73380458]
[ 0.45539155 0.04232412 0.82857746 0.35097793]
[ 0.70418988 0.78075814 0.70963972 0.63774692]]
[[ 0.17772347 0.64875514 0.48422954 0.86919646]
[ 0.92771033 0.51518773 0.82679073 0.18469917]
[ 0.37260457 0.49041953 0.96221477 0.16300198]]]
# 转换后:
[[[ 0.91281153 0.61213743 0.16214062 0.73380458]
[ 0.17772347 0.64875514 0.48422954 0.86919646]]
[[ 0.45539155 0.04232412 0.82857746 0.35097793]
[ 0.92771033 0.51518773 0.82679073 0.18469917]]
[[ 0.70418988 0.78075814 0.70963972 0.63774692]
[ 0.37260457 0.49041953 0.96221477 0.16300198]]]
元素计算函数
ceil()
: 向上最接近的整数,参数是 number 或 array
floor()
:向下最接近的整数,参数是 number 或 array
rint()
: 四舍五入,参数是 number 或 array
isnan()
: 判断元素是否为 NaN(Not a Number),参数是 number 或 array
multiply()
: 元素相乘,参数是 number 或 array
divide()
: 元素相除,参数是 number 或 array
abs()
:元素的绝对值,参数是 number 或 array
where(condition, x, y)
:三元运算符,x if condition else y
# randn() 返回具有标准正态分布的序列。
arr = np.random.randn(2,3)
print(arr)
print(np.ceil(arr))
print(np.floor(arr))
print(np.rint(arr))
print(np.isnan(arr))
print(np.multiply(arr, arr))
print(np.divide(arr, arr))
print(np.where(arr > 0, 1, -1))
# print(arr)
[[-0.8350279 0.44716655 0.93326866]
[ 0.22468383 -0.48611045 0.38554865]]
# print(np.ceil(arr))
[[-0. 1. 1.]
[ 1. -0. 1.]]
# print(np.floor(arr))
[[-1. 0. 0.]
[ 0. -1. 0.]]
# print(np.rint(arr))
[[-1. 0. 1.]
[ 0. -0. 0.]]
# print(np.isnan(arr))
[[False False False]
[False False False]]
# print(np.multiply(arr, arr))
[[ 5.16284053e+00 1.77170104e+00 3.04027254e-02]
[ 5.11465231e-03 3.46109263e+00 1.37512421e-02]]
# print(np.divide(arr, arr))
[[ 1. 1. 1.]
[ 1. 1. 1.]]
# print(np.where(arr > 0, 1, -1))
[[-1 1 1]
[ 1 -1 1]]
元素统计函数
1 .np.mean()
, np.sum()
:所有元素的平均值,所有元素的和,参数是 number 或 array
2 .np.max()
, np.min()
:所有元素的最大值,所有元素的最小值,参数是 number 或 array
3 .np.std()
, np.var()
:所有元素的标准差,所有元素的方差,参数是 number 或 array
4 .np.argmax()
, np.argmin()
:最大值的下标索引值,最小值的下标索引值,参数是 number 或 array
5 .np.cumsum()
, np.cumprod()
:返回一个一维数组,每个元素都是之前所有元素的 累加和 和 累乘积,参数是 number 或 array
6 .多维数组默认统计全部维度,axis
参数可以按指定轴心统计,值为0则按列统计,值为1则按行统计。
arr = np.arange(12).reshape(3,4)
print(arr)
print(np.cumsum(arr)) # 返回一个一维数组,每个元素都是之前所有元素的 累加和
print(np.sum(arr)) # 所有元素的和
print(np.sum(arr, axis=0)) # 数组的按列统计和
print(np.sum(arr, axis=1)) # 数组的按行统计和
# print(arr)
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
# print(np.cumsum(arr))
[ 0 1 3 6 10 15 21 28 36 45 55 66]
# print(np.sum(arr)) # 所有元素的和
66
# print(np.sum(arr, axis=0)) # 0表示对数组的每一列的统计和
[12 15 18 21]
# print(np.sum(arr, axis=1)) # 1表示数组的每一行的统计和
[ 6 22 38]
元素判断函数
1 .np.any()
: 至少有一个元素满足指定条件,返回True
2 .np.all()
: 所有的元素满足指定条件,返回True
arr = np.random.randn(2,3)
print(arr)
print(np.any(arr > 0))
print(np.all(arr > 0))
[[ 0.05075769 -1.31919688 -1.80636984]
[-1.29317016 -1.3336612 -0.19316432]]
True
False
元素去重排序函数
np.unique()
:找到唯一值并返回排序结果,类似于Python的set集合
arr = np.array([[1, 2, 1], [2, 3, 4]])
print(arr)
print(np.unique(arr))
[[1 2 1]
[2 3 4]]
[1 2 3 4]
项目地址:https://www.kaggle.com/fivethirtyeight/2016-election-polls
该数据集包含了2015年11月至2016年11月期间对于2016美国大选的选票数据,共27列数据
# loadtxt
import numpy as np
# csv 名逗号分隔值文件
filename = ‘./presidential_polls.csv‘
# 通过loadtxt()读取本地csv文件
data_array = np.loadtxt(filename, # 文件名
delimiter=‘,‘, # 分隔符
dtype=str, # 数据类型,数据是Unicode字符串
usecols=(0,2,3)) # 指定读取的列号
# 打印ndarray数据,保留第一行
print(data_array, data_array.shape)
[["b‘cycle‘" "b‘type‘" "b‘matchup‘"]
["b‘2016‘" ‘b\‘"polls-plus"\‘‘ ‘b\‘"Clinton vs. Trump vs. Johnson"\‘‘]
["b‘2016‘" ‘b\‘"polls-plus"\‘‘ ‘b\‘"Clinton vs. Trump vs. Johnson"\‘‘]
...,
["b‘2016‘" ‘b\‘"polls-only"\‘‘ ‘b\‘"Clinton vs. Trump vs. Johnson"\‘‘]
["b‘2016‘" ‘b\‘"polls-only"\‘‘ ‘b\‘"Clinton vs. Trump vs. Johnson"\‘‘]
["b‘2016‘" ‘b\‘"polls-only"\‘‘ ‘b\‘"Clinton vs. Trump vs. Johnson"\‘‘]] (10237, 3)
import numpy as np
# 读取列名,即第一行数据
with open(filename, ‘r‘) as f:
col_names_str = f.readline()[:-1] # [:-1]表示不读取末尾的换行符‘\n‘
# 将字符串拆分,并组成列表
col_name_lst = col_names_str.split(‘,‘)
# 使用的列名:结束时间,克林顿原始票数,川普原始票数,克林顿调整后票数,川普调整后票数
use_col_name_lst = [‘enddate‘, ‘rawpoll_clinton‘, ‘rawpoll_trump‘,‘adjpoll_clinton‘, ‘adjpoll_trump‘]
# 获取相应列名的索引号
use_col_index_lst = [col_name_lst.index(use_col_name) for use_col_name in use_col_name_lst]
# 通过genfromtxt()读取本地csv文件,
data_array = np.genfromtxt(filename, # 文件名
delimiter=‘,‘, # 分隔符
#skiprows=1, # 跳过第一行,即跳过列名
dtype=str, # 数据类型,数据不再是Unicode字符串
usecols=use_col_index_lst)# 指定读取的列索引号
# genfromtxt() 不能通过 skiprows 跳过第一行的
# [‘enddate‘ ‘rawpoll_clinton‘ ‘rawpoll_trump‘ ‘adjpoll_clinton‘ ‘adjpoll_trump‘]
# 去掉第一行
data_array = data_array[1:]
# 打印ndarray数据
print(data_array[1:], data_array.shape)
[[‘10/30/2016‘ ‘45‘ ‘46‘ ‘43.29659‘ ‘44.72984‘]
[‘10/30/2016‘ ‘48‘ ‘42‘ ‘46.29779‘ ‘40.72604‘]
[‘10/24/2016‘ ‘48‘ ‘45‘ ‘46.35931‘ ‘45.30585‘]
...,
[‘9/22/2016‘ ‘46.54‘ ‘40.04‘ ‘45.9713‘ ‘39.97518‘]
[‘6/21/2016‘ ‘43‘ ‘43‘ ‘45.2939‘ ‘46.66175‘]
[‘8/18/2016‘ ‘32.54‘ ‘43.61‘ ‘31.62721‘ ‘44.65947‘]] (10236, 5)
标签:undefined 能力 red date 索引 示例 int() bsp html
原文地址:http://www.cnblogs.com/zhouxinfei/p/7860582.html