码迷,mamicode.com
首页 > 其他好文 > 详细

Exercise: PCA in 2D

时间:2014-09-14 21:54:27      阅读:314      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   color   io   os   ar   for   数据   

 
Step 0: Load data

The starter code contains code to load 45 2D data points. When plotted using the scatter function, the results should look like the following:

bubuko.com,布布扣

 

Step 1: Implement PCA

In this step, you will implement PCA to obtain xrot, the matrix in which the data is "rotated" to the basis comprising bubuko.com,布布扣 made up of the principal components

 

Step 1a: Finding the PCA basis

Find bubuko.com,布布扣 and bubuko.com,布布扣, and draw two lines in your figure to show the resulting basis on top of the given data points.

bubuko.com,布布扣

Step 1b: Check xRot

Compute xRot, and use the scatter function to check that xRot looks as it should, which should be something like the following:

bubuko.com,布布扣

 

Step 2: Dimension reduce and replot

In the next step, set k, the number of components to retain, to be 1

bubuko.com,布布扣

Step 3: PCA Whitening

bubuko.com,布布扣

Step 4: ZCA Whitening

bubuko.com,布布扣

 

Code

close all

%%================================================================
%% Step 0: Load data
%  We have provided the code to load data from pcaData.txt into x.
%  x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to
%  the kth data point.Here we provide the code to load natural image data into x.
%  You do not need to change the code below.

x = load(pcaData.txt,-ascii); % 载入数据
figure(1);
scatter(x(1, :), x(2, :)); % 用圆圈绘制出数据分布
title(Raw data);


%%================================================================
%% Step 1a: Implement PCA to obtain U 
%  Implement PCA to obtain the rotation matrix U, which is the eigenbasis
%  sigma. 

% -------------------- YOUR CODE HERE -------------------- 
u = zeros(size(x, 1)); % You need to compute this
[n m]=size(x);
% x=x-repmat(mean(x,2),1,m);  %预处理,均值为零 —— 2维,每一维减去该维上的均值
sigma=(1.0/m)*x*x; % 协方差矩阵
[u s v]=svd(sigma);

% -------------------------------------------------------- 
hold on
plot([0 u(1,1)], [0 u(2,1)]); % 画第一条线
plot([0 u(1,2)], [0 u(2,2)]); % 画第二条线
scatter(x(1, :), x(2, :));
hold off

%%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
%  Now, compute xRot by projecting the data on to the basis defined
%  by U. Visualize the points by performing a scatter plot.

% -------------------- YOUR CODE HERE -------------------- 
xRot = zeros(size(x)); % You need to compute this
xRot=u*x;

% -------------------------------------------------------- 

% Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure(2);
scatter(xRot(1, :), xRot(2, :));
title(xRot);

%%================================================================
%% Step 2: Reduce the number of dimensions from 2 to 1. 
%  Compute xRot again (this time projecting to 1 dimension).
%  Then, compute xHat by projecting the xRot back onto the original axes 
%  to see the effect of dimension reduction

% -------------------- YOUR CODE HERE -------------------- 
k = 1; % Use k = 1 and project the data onto the first eigenbasis
xHat = zeros(size(x)); % You need to compute this
xHat = u*([u(:,1),zeros(n,1)]*x); % 降维
% 使特征点落在特征向量所指的方向上而不是原坐标系上


% -------------------------------------------------------- 
figure(3);
scatter(xHat(1, :), xHat(2, :));
title(xHat);


%%================================================================
%% Step 3: PCA Whitening
%  Complute xPCAWhite and plot the results.

epsilon = 1e-5;
% -------------------- YOUR CODE HERE -------------------- 
xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*u*x;  % 每个特征除以对应的特征向量,以使每个特征有一致的方差
% -------------------------------------------------------- 
figure(4);
scatter(xPCAWhite(1, :), xPCAWhite(2, :));
title(xPCAWhite);

%%================================================================
%% Step 3: ZCA Whitening
%  Complute xZCAWhite and plot the results.

% -------------------- YOUR CODE HERE -------------------- 
xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u*diag(1./sqrt(diag(s)+epsilon))*u*x;

% -------------------------------------------------------- 
figure(5);
scatter(xZCAWhite(1, :), xZCAWhite(2, :));
title(xZCAWhite);

%% Congratulations! When you have reached this point, you are done!
%  You can now move onto the next PCA exercise. :)

Exercise: PCA in 2D

标签:style   blog   http   color   io   os   ar   for   数据   

原文地址:http://www.cnblogs.com/sprint1989/p/3971567.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!