标签:sha ant 输出 collect orm targe 维度 mbed pytho
word2Vec 是实现从原始语料中学习字词空间向量的预测模型
使用word2Vec的skip_Gram模型
import collections import math import os import random import zipfile import numpy as np import urllib.request import tensorflow as tf url = ‘http://mattmahoney.net/dc/‘ def maybe_download(filename,expected_bytes): "下载数据的压缩文件并核对文件尺寸大小" if not os.path.exists(filename): filename ,_=urllib.request.urlretrieve(url+filename,filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print(‘Found and verified‘,filename) else: print(statinfo.st_size) raise Exception( ‘Failed to verify‘+filename +‘.can you get to it with a browser?‘ ) return filename filename = maybe_download(‘text8.zip‘,31344016) def read_data(filename): with zipfile.ZipFile(filename) as f: "将数据转化为单词列表" data = tf.compat.as_str(f.read(f.namelist()[0])).split( ) return data words = read_data(filename) print(‘Data size‘,len(words)) "创建词汇表" vocabulary_size =50000 def build_dataset(words): count = [[‘UNK‘,-1]] "统计单词列表中单词的频数,把前50000的放入字典" count.extend(collections.Counter(words).most_common(vocabulary_size-1)) dictionary = dict() for word,_ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 """ 不在前50000里面 编码为0 """ for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count +=1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys())) return data,count,dictionary,reverse_dictionary data, count,dictionary,reverse_dictionary = build_dataset(words) del words print(‘Most common words (+UNK)‘,count[:5]) print(‘Sample data‘,data[:10],[reverse_dictionary[i] for i in data[:10]]) data_index = 0 def generate_batch(batch_size,num_skips,skip_window): """ :param batch_size: :param num_skips: 对每个单词生成多少样本 不大于2*skip_window :param skip_window: 滑动窗口步长 :return: batch labels """ global data_index assert batch_size %num_skips==0 assert num_skips <=2*skip_window batch = np.ndarray(shape=(batch_size),dtype=np.int32) labels = np.ndarray(shape=(batch_size,1),dtype=np.int32) span = 2*skip_window+1 buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index+1)%len(data) for i in range(batch_size//num_skips): # 一块batch里面有包含的目标单词数 target = skip_window target_to_avoid = [skip_window] #需要避免的单词列表 for j in range(num_skips): # 找到可以使用的语境词语 while target in target_to_avoid: target = random.randint(0,span-1) target_to_avoid.append(target) batch[i*num_skips+j]=buffer[skip_window] #目标词汇 labels[i*num_skips+j,0] = buffer[target] #语境词汇 "buffer此时已经填满,后续的数据会覆盖掉前面的数据" buffer.append(data[data_index]) data_index=(data_index+1)%len(data) return batch,labels batch,labels = generate_batch(batch_size=8,num_skips=2,skip_window=1) for i in range(8): print(batch[i],reverse_dictionary[batch[i]],‘->‘,labels[i,0],reverse_dictionary[labels[i,0]]) batch_size = 128 embedding_size = 128 #单词转化为稠密词向量的维度 skip_window = 1 num_skips = 2 valid_size = 16 #验证单词数 valid_window = 100 #验证单词数从频数最高的100个单词里面抽取 valid_examples = np.random.choice(valid_window,valid_size,replace=False) #负样本的噪声单词数 num_sampled =64 graph = tf.Graph() with graph.as_default(): train_inputs = tf.placeholder(tf.int32,shape=[batch_size]) train_labels = tf.placeholder(tf.int32,shape=[batch_size,1]) valid_dataset = tf.constant(valid_examples,dtype = tf.int32) with tf.device(‘/cpu:0‘): embeddings = tf.Variable( tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0) ) embed = tf.nn.embedding_lookup(embeddings,train_inputs) #查找输入对应的向量 nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size,embedding_size], stddev=1.0/math.sqrt(embedding_size)) ) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) loss = tf.reduce_mean(tf.nn.nce_loss( weights=nce_weights, biases= nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size )) optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims = True)) normalized_embeddings=embeddings/norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset) similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True) init = tf.global_variables_initializer() num_step =100001 with tf.Session(graph=graph)as session: init.run() print(‘Initialized‘) average_loss = 0 for step in range(num_step): batch_inputs,batch_labels=generate_batch(batch_size,num_skips,skip_window) feed_dict={train_inputs:batch_inputs,train_labels:batch_labels} _,loss_val = session.run([optimizer,loss],feed_dict=feed_dict) average_loss+=loss_val if step%200==0: if step >0: average_loss /=2000 print(‘Average loss at step‘,step,":",average_loss) average_loss=0 "把验证单词的相关单词与所有单词计算相关性,并输出前8个相似性高的单词" if step%10000==0: sim = similarity.eval() for i in range(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 nearest = (-sim[i,:]).argsort()[1:top_k+1] log_str = "Nearest to %s:"%valid_word for k in range(top_k): close_word = reverse_dictionary[nearest[k]] log_str= "%s %s,"%(log_str,close_word) print(log_str) final_embeddings = normalized_embeddings.eval()
使用url下载数据集会出现数据集下载不完整,推荐手动下载数据集 网址为http://mattmahoney.net/dc/text8.zip
结果如下
标签:sha ant 输出 collect orm targe 维度 mbed pytho
原文地址:http://www.cnblogs.com/jzcbest1016/p/7865824.html