标签:汽车 dict append class 组合 技术 str cti category
import pandas as pd
import jjieba
df_news = pd.read_table(‘./data/val.txt‘,names=[‘category‘,‘theme‘,‘URL‘,‘content‘],encoding=‘utf-8‘) df_news = df_news.dropna() # 缺失值直接drop掉 df_news.head()
content = df_news.content.values.tolist()
分词 content_S = [] for line in content: current_segment = jieba.lcut(line) # 分词 if len(current_segment)>1 and current_segment != ‘\r\n‘: # 换行符 content_S.append(current_segment)
df_content = pd.DataFrame({‘content_S‘:content_S}) df_content.head()
数据清洗、停用词
stopwords = pd.read_csv("stopwords.txt",index_col=False,sep="\t",quoting=3,names=[‘stopword‘],encoding=‘utf-8‘ stopwords.head()
# 通过自定义函数来实现
def drop_stopwords(contents,stopwords):
contents_clean = []
all_words = []
for line in contents:
line_clean = []
for word in line:
if word in stopwords:
continue
line_clean.append(word)
all_words.append(str(word))
contents_clean.append(line_clean)
return contents_clean,all_words
contents = df_content.content_S.values.tolist()
stopwords = stopwords.stopword.values.tolist()
contents_clean,all_words = drop_stopwords(contents,stopwords)
df_content = pd.DataFrame({‘contents_clean‘:contents_clean})
df_content.head()
df_all_words = pd.DataFrame({‘all_words‘:all_words})
df_all_words.head()
words_count = df_all_words.groupby(by=[‘all_words‘])[‘all_words‘].agg({"count":numpy.size}) words_count = words_count.reset_index().sort_values(by=["count"],ascending=False) # reset_index:重置索引,sort_value:排序 word_count.head()
WordCloud库
from wordcloud import WordCloud import matplotlib.pyplot as plt %matplotlib inline import matplotlib matplotlib.rcParams[‘figure.figsize‘] = (10.0,5.0) wordcloud = WordCloud(font_path="./data/simhei.ttf",background_color=‘white‘,max_font_size=80) word_frequence = {x[0]:x[1] for x in words_count.head(100).values} wordcloud = wordcloud.fit_words(word_frequence) plt.imshow(wordcloud)
jieba提取关键字
import jieba.analyse index = 1000 print(df_news[‘content‘][index]) content_S_str = "".join(content_S[index]) print(" ”.join(jieba.analyse.extract_tags(content_S_str,topK=5,withWeight=False))) # topK关键词数量
LDA:主题模型 from gensim import corpora,models,similarities import gensim
# 做映射,相当于词袋 dictionary = corpora.Dictionary(contents_clean) # contents_clean要求:list of list形式(两个list),分词好的整个语料 corpus = [dictionary.doc2bow(sentence) for sentence in contents_clean]
lda = gensim.models.ldamodel.LdaModel(corpus=corpus,id2word=dictionary,num_topics=20) # num_topics:number of topics
print(lda.print_topic(1,topn=5))
for topic in lda.print_topics(num_topics=20,num_words=5): # 20个主题,5个关键词
print(topic[1])
基于贝叶斯算法的新闻分类 df_train = pd.DataFrame({‘contents_clean‘:contents_clean,‘label‘:fd_news[‘category‘]}) df_train.tail()
df_train.label.unique()
label_mapping = {"汽车":1,"财经":2,"科技":3,"健康":4,"体育":5,"教育":6,"文化":7,"军事":8,"娱乐":9,"时尚":10} df_train[‘label‘] = df_train[‘label‘].map(label_mapping) df_train.head()
from aklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(df_train[‘contents_clean].values,df_train[‘label‘].values,random_state=1)
words = [] for line_index in range(len(x_train)): try: # x_train[line_index][word_index] = str(x_train[line_index][word_index]) words.append(‘ ‘.join(x_train[line_index])) # 转换成能够转换成向量的格式 except: print(line_index,word_index) words[0]
from sklearn.feature_extraction.text import CountVectorizer vec = CountVectorizer(analyzer=‘word‘,max_features=4000,lowercase=False) vec.fit(words)
from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB() classifier.fit(vec.transform(words),y_train)
# 测试集 test_words = [] for line_index in range(len(x_test)): try: # x_train[line_index][word_index] = str(x_train[line_index][word_index]) test_words.append(‘ ‘.join(x_test[line_index])) # 转换成能够转换成向量的格式 except: print(line_index,word_index) test_words[0]
classifier.score(vec.transform(test_words),y_test) # 输出:0.804000000000....
CountVectorizer的标准使用方式,跟案例无关
from sklearn.feature_extraction.text import CountVectorizer tests=["dog cat fish","dog cat cat","fish bird",‘bird‘] # 注意一定要将数据转化成这种格式 cv = CountVectorizer() cv_fit = cv.fit_transform(texts) print(cv.get_feature_names()) # 不重复的单词 print(cv_fit.toarray()) print(cv_fit.toarray().sum(axis=0))
from sklearn.feature_extraction.text import CountVectorizer
tests=["dog cat fish","dog cat cat","fish bird",‘bird‘] # 注意一定要将数据转化成这种格式
cv = CountVectorizer(ngram_range=(1,4)) # ngram_range进行组合
cv_fit = cv.fit_transform(texts)
print(cv.get_feature_names()) # 不重复的单词
print(cv_fit.toarray())
print(cv_fit.toarray().sum(axis=0))
相比之前,精确度稍微有些提升,只是稍微
from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(analyzer=‘word‘,max_features=4000,lowercase=False) vectorizer.fit(words)
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
classifier.fit(vectorizer.transform(words),y_train)
classifier.score(vectorizer.transform(test_words),y_test) # 输出结果:0.8152000000000......
标签:汽车 dict append class 组合 技术 str cti category
原文地址:http://www.cnblogs.com/panjie123pakho/p/7881498.html