标签:nim 1.0 and optimize nump color style variables weight
import tensorflow as tf import numpy as np x_data = np.random.rand(3).astype(np.float32) y_data = x_data * 0.1 + 0.3; ### Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0)) biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases loss=tf.reduce_mean(tf.square(y-y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) init = tf.initialize_all_variables() ### sess = tf.Session() sess.run(init) for step in range(201): sess.run(train) if step % 20 == 0: print(step,sess.run(Weights),sess.run(biases))
最后输出的结果是一个逐渐靠近[0.1,0.3]数组
标签:nim 1.0 and optimize nump color style variables weight
原文地址:http://www.cnblogs.com/guolaomao/p/7899808.html