标签:rand nim demo dom add pre port oba normal
import tensorflow as tf import numpy as np def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size])) + 0.1 Wx_plus_b = tf.matmul(inputs,Weights) + biases if activation_function is None : outputs= Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1,1,300)[:,np.newaxis] noise = np.random.normal(0,0.05,x_data.shape) y_data = np.square(x_data) - 0.5 + noise xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,[None,1]) l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) prediction = add_layer(l1,10,1,activation_function=None) loss =tf.reduce_mean(tf.reduce_sum( tf.square(ys-prediction),reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for i in range(1000): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i % 50 == 0: print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
标签:rand nim demo dom add pre port oba normal
原文地址:http://www.cnblogs.com/guolaomao/p/7901020.html