标签:使用 end ica symbol 属性 rom get 读取数据 span
参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树。
其实只需要改动很小的一部分就可以了,把原先计算信息熵和信息增益的部分换做计算基尼指数,选择最优属性的时候,选择最小的基尼指数即可。
#导入模块 import pandas as pd import numpy as np from collections import Counter #数据获取与处理 def getData(filePath): data = pd.read_excel(filePath) return data def dataDeal(data): dataList = np.array(data).tolist() dataSet = [element[1:] for element in dataList] return dataSet #获取属性名称 def getLabels(data): labels = list(data.columns)[1:-1] return labels #获取类别标记 def targetClass(dataSet): classification = set([element[-1] for element in dataSet]) return classification #将分支结点标记为叶结点,选择样本数最多的类作为类标记 def majorityRule(dataSet): mostKind = Counter([element[-1] for element in dataSet]).most_common(1) majorityKind = mostKind[0][0] return majorityKind ##计算基尼值 def calculateGini(dataSet): classColumnCnt = Counter([element[-1] for element in dataSet]) gini = 0 for symbol in classColumnCnt: p_k = classColumnCnt[symbol]/len(dataSet) gini = gini+p_k**2 gini = 1-gini return gini #子数据集构建 def makeAttributeData(dataSet,value,iColumn): attributeData = [] for element in dataSet: if element[iColumn]==value: row = element[:iColumn] row.extend(element[iColumn+1:]) attributeData.append(row) return attributeData #计算基尼指数 def GiniIndex(dataSet,iColumn): index = 0.0 attribute = set([element[iColumn] for element in dataSet]) for value in attribute: attributeData = makeAttributeData(dataSet,value,iColumn) index = index+len(attributeData)/len(dataSet)*calculateGini(attributeData) return index #选择最优属性 def selectOptimalAttribute(dataSet,labels): bestGini = [] for iColumn in range(0,len(labels)):#不计最后的类别列 index = GiniIndex(dataSet,iColumn) bestGini.append(index) sequence = bestGini.index(min(bestGini)) return sequence #建立决策树 def createTree(dataSet,labels): classification = targetClass(dataSet) #获取类别种类(集合去重) if len(classification) == 1: return list(classification)[0] if len(labels) == 1: return majorityRule(dataSet)#返回样本种类较多的类别 sequence = selectOptimalAttribute(dataSet,labels) optimalAttribute = labels[sequence] del(labels[sequence]) myTree = {optimalAttribute:{}} attribute = set([element[sequence] for element in dataSet]) for value in attribute: subLabels = labels[:] myTree[optimalAttribute][value] = createTree(makeAttributeData(dataSet,value,sequence),subLabels) return myTree #定义主函数 def main(): filePath = ‘watermelonData.xls‘ data = getData(filePath) dataSet = dataDeal(data) labels = getLabels(data) myTree = createTree(dataSet,labels) return myTree #读取数据文件并转换为列表(含有汉字的,使用CSV格式读取容易出错) if __name__ == ‘__main__‘: myTree = main() print (myTree)
结果竟然是一样的,深度怀疑做错了。
(二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树
标签:使用 end ica symbol 属性 rom get 读取数据 span
原文地址:http://www.cnblogs.com/dennis-liucd/p/7944033.html