标签:代码 int 递归 长度 name pushd ring 平移 tag
题目描述
输入
输出
样例输入
5 0
1 1 2 2 3
样例输出
10
题解
Treap
做麻烦了...
先把所有相同的数出现的位置存到一个vector里,然后考虑这个数作为众数的贡献。
考虑枚举贡献段的最后一个数的位置,这样对于某个左边的该数出现的位置,区间长度应该满足:区间长度小于2*这段中该数的个数。
如果设 x 表示右端点位置, y 表示右端点在某位置下满足条件的区间个数。那么由于区间长度一定,可以得到一个 y=-x+b 类型的直线(实际上有意义的只有第一象限的部分)。
但是这样会有一个问题:某些区间会计算重复。
由于考虑的是这段该数出现位置的贡献,因此区间不能包含其它的该数,即贡献区间的最端点不能达到上一个出现位置。
因此可以得到如下的图:
(好,以上只是理论部分...)
考虑一下我们需要做的:
我们枚举该数出现位置的右端点,并计算 [上一个出现的位置,当前位置) 区间的贡献。我们维护所有前面的这样的折线,统计所有折线在这段区间的面积和。
然后,由于多了当前位置,相当于以前的区间中选择区间的长度加了2,因此这些折线需要向右平移2个单位。
最后,需要把当前位置对应的折线维护起来。
一条折线可以看作是两条直线作差,因此我们需要做的有:添加直线、维护直线面积、支持直线集体向右平移。可以使用Treap来维护。
按照直线与x轴交点来维护,维护直线的斜率、截距、面积,以及子树中这三者的和。插入直接正常插入,整体平移则直接打标记。
统计面积的过程可以转化为前缀相减。在Treap上查询,如果其与左边的位置都小于当前位置,那么左边的答案就是面积总和,递归右子树;否则右边的贡献都是梯形面积(转化为等差数列求和),递归左子树。
然后就可以了,注意开long long。
细节贼多...
时间复杂度$O(n\log n)$
然后我考试时写的SBT,由于没有在旋转时pushdown(震惊!SBT竟然要在旋转时pushdown)导致爆0,再也不写SBT了...
附上Treap的代码:
#include <vector> #include <cstdio> #include <cstring> #include <algorithm> #define N 500010 using namespace std; typedef long long ll; vector<int> v[N]; int l[N] , r[N] , rnd[N] , tot , root , a[N]; ll vp[N] , tag[N] , wk[N] , wb[N] , ws[N] , sk[N] , sb[N] , ss[N]; inline void add(int k , ll x) { vp[k] += x; ws[k] += (2 * wb[k] - (x + 1) * wk[k]) * x / 2; ss[k] += (2 * sb[k] - (x + 1) * sk[k]) * x / 2; wb[k] -= wk[k] * x; sb[k] -= sk[k] * x; tag[k] += x; } inline void pushup(int k) { sk[k] = sk[l[k]] + sk[r[k]] + wk[k]; sb[k] = sb[l[k]] + sb[r[k]] + wb[k]; ss[k] = ss[l[k]] + ss[r[k]] + ws[k]; } inline void pushdown(int k) { if(tag[k]) add(l[k] , tag[k]) , add(r[k] , tag[k]) , tag[k] = 0; } inline void zig(int &k) { int t = l[k]; l[k] = r[t] , r[t] = k , pushup(k) , pushup(t) , k = t; } inline void zag(int &k) { int t = r[k]; r[k] = l[t] , l[t] = k , pushup(k) , pushup(t) , k = t; } void insert(int &k , ll p , ll xk , ll xb) { if(!k) { k = ++tot , vp[k] = p , wk[k] = sk[k] = xk , wb[k] = sb[k] = xb , ws[k] = ss[k] = xb * (p + 1) / 2 , rnd[k] = rand(); return; } pushdown(k); if(p < vp[k]) { insert(l[k] , p , xk , xb) , pushup(k); if(rnd[l[k]] < rnd[k]) zig(k); } else { insert(r[k] , p , xk , xb) , pushup(k); if(rnd[r[k]] < rnd[k]) zag(k); } } ll query(int k , ll p) { if(!k) return 0; pushdown(k); if(p < vp[k]) return (2 * (wb[k] + sb[r[k]]) + (wk[k] + sk[r[k]]) * p) * (p + 1) / 2 + query(l[k] , p); else return ws[k] + ss[l[k]] + query(r[k] , p); } void clear(int k) { if(!k) return; clear(l[k]) , clear(r[k]) , l[k] = r[k] = vp[k] = tag[k] = wk[k] = wb[k] = ws[k] = sk[k] = sb[k] = ss[k] = 0; } int main() { int n , i , pos; ll ans = 0; unsigned j; scanf("%d%*d" , &n); for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , v[++a[i]].push_back(i); for(i = 1 ; i <= n ; i ++ ) v[i].push_back(n + 1); for(i = 1 ; i <= n ; i ++ ) { pos = 0; for(j = 0 ; j < v[i].size() ; j ++ ) { ans += query(root , v[i][j] - 1) - query(root , pos - 1); add(root , 2); insert(root , v[i][j] + 1 , -1 , v[i][j] + 1) , insert(root , pos + 1 , 1 , -pos - 1); pos = v[i][j]; } clear(root) , root = tot = 0; } printf("%lld\n" , ans); return 0; }
【bzoj5110】[CodePlus2017]Yazid 的新生舞会 Treap
标签:代码 int 递归 长度 name pushd ring 平移 tag
原文地址:http://www.cnblogs.com/GXZlegend/p/7953471.html