码迷,mamicode.com
首页 > 其他好文 > 详细

chapter4 quantum circuits

时间:2017-12-02 20:22:30      阅读:180      评论:0      收藏:0      [点我收藏+]

标签:lex   enter   aspect   one   complex   sage   nts   direct   ems   

 

 

 


4.7 Simulation of quantum systems

  计算的实际应用之一是模拟物理系统。

4.7.1 simulation in action

  模拟的核心是微分方程的解。

  用经典计算机模拟量子系统是可能的,但通常低效。(我们瞄准……这一类问题,提出了一种有效的模拟方式)、

  模拟量子系统的关键挑战是: 必须要求解的微分方程的指数数目。

  如 for n qubits, 2n equations.

  特点: exponential complexity growth of quantum systems.

  

  结论:量子计算机能有效地模拟量子系统。

4.7.2 the quantum simulation algorithms

  

(*exp(x)展开项*)
f01[n_] := (0.1^n)/(n!)

f3[n_] := (3^n)/(n!)
f5[n_] := (5^n)/(n!)
DiscretePlot[{f1[n], f3[n], f5[n]}, {n, 0, 6}


\!\(\*
GraphicsBox[{{
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
      0.019444444444444445`], AbsoluteThickness[1.6], {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
        0.019444444444444445`], AbsoluteThickness[1.6], Opacity[0.2], 
        LineBox[{},
VertexColors->None]}, 
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
        0.019444444444444445`], AbsoluteThickness[1.6], Opacity[0.2], 
        LineBox[{{{0., 1.}, {0., 0}}, {{1., 1.}, {1., 0}}, {{2., 
           0.5}, {2., 0}}, {{3., 0.16666666666666666`}, {3., 0}}, {{
           4., 0.041666666666666664`}, {4., 0}}, {{5., 
           0.008333333333333333}, {5., 0}}, {{6., 
           0.001388888888888889}, {6., 0}}},
VertexColors->None]}}}, 
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
      0.019444444444444445`], AbsoluteThickness[1.6], {
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
        0.019444444444444445`], AbsoluteThickness[1.6], Opacity[0.2], 
        LineBox[{},
VertexColors->None]}, 
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
        0.019444444444444445`], AbsoluteThickness[1.6], Opacity[0.2], 
        LineBox[{{{0., 1.}, {0., 0}}, {{1., 3.}, {1., 0}}, {{2., 
           4.5}, {2., 0}}, {{3., 4.5}, {3., 0}}, {{4., 3.375}, {
           4., 0}}, {{5., 2.025}, {5., 0}}, {{6., 1.0125}, {6., 0}}},
VertexColors->None]}}}, 
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
      0.019444444444444445`], AbsoluteThickness[1.6], {
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
        0.019444444444444445`], AbsoluteThickness[1.6], Opacity[0.2], 
        LineBox[{},
VertexColors->None]}, 
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
        0.019444444444444445`], AbsoluteThickness[1.6], Opacity[0.2], 
        LineBox[{{{0., 1.}, {0., 0}}, {{1., 5.}, {1., 0}}, {{2., 
           12.5}, {2., 0}}, {{3., 20.833333333333332`}, {3., 0}}, {{
           4., 26.041666666666668`}, {4., 0}}, {{5., 
           26.041666666666668`}, {5., 0}}, {{6., 21.70138888888889}, {
           6., 0}}},
VertexColors->None]}}}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
      0.019444444444444445`], AbsoluteThickness[1.6], {}, 
      PointBox[{{0., 1.}, {1., 1.}, {2., 0.5}, {3., 
       0.16666666666666666`}, {4., 0.041666666666666664`}, {5., 
       0.008333333333333333}, {6., 0.001388888888888889}}], {}}, 
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
      0.019444444444444445`], AbsoluteThickness[1.6], {}, 
      PointBox[{{0., 1.}, {1., 3.}, {2., 4.5}, {3., 4.5}, {4., 
       3.375}, {5., 2.025}, {6., 1.0125}}], {}}, 
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[
      0.019444444444444445`], AbsoluteThickness[1.6], {}, 
      PointBox[{{0., 1.}, {1., 5.}, {2., 12.5}, {3., 
       20.833333333333332`}, {4., 26.041666666666668`}, {5., 
       26.041666666666668`}, {6., 21.70138888888889}}], {}}}},
AspectRatio->0.6180339887498948,
Axes->True,
AxesOrigin->{0, 0},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"MessagesHead" -> DiscretePlot, "AxisPadding" -> 5.87, 
     "DefaultBoundaryStyle" -> Automatic, "DefaultPlotStyle" -> {
Directive[
RGBColor[0.368417, 0.506779, 0.709798], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.880722, 0.611041, 0.142051], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.560181, 0.691569, 0.194885], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.922526, 0.385626, 0.209179], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.528488, 0.470624, 0.701351], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.772079, 0.431554, 0.102387], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.363898, 0.618501, 0.782349], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[1, 0.75, 0], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.647624, 0.37816, 0.614037], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.571589, 0.586483, 0.], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.915, 0.3325, 0.2125], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
AbsoluteThickness[1.6]], 
Directive[
RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
AbsoluteThickness[1.6]]}, "DomainPadding" -> 5.87, 
     "RangePadding" -> 14.675},
PlotRange->{{0, 6}, {0, 26.041666666666668`}},
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.02], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)

  

 

  

  

 

chapter4 quantum circuits

标签:lex   enter   aspect   one   complex   sage   nts   direct   ems   

原文地址:http://www.cnblogs.com/zhangshihao/p/7955291.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!